It is currently Tue Jul 23, 2019 4:40 pm

 All times are UTC [ DST ]

 Print view Previous topic | Next topic
Author Message
 Post subject: Proof of the fundamental theorem of line integrals Posted: Wed Aug 29, 2018 2:28 pm

Joined: Wed Nov 15, 2017 12:37 pm
Posts: 20
Quote:
Suppose $C$ is a smooth curve given by $\vec{r}(t)$, $a \leq t \leq b$. Also suppose that $\Phi$ is a function whose gradient vector, $\nabla \Phi=f$, is continuous on $C$. Then
$$\int_C f \cdot \,\mathrm{d}\vec{r} = \Phi(\vec{r}(b))-\Phi(\vec{r}(a)).$$

To prove this, we start by rewriting the integral using the parameterization of $C$. So
$$\int_C f \cdot \,\mathrm{d}\vec{r} = \int_a^bf(\vec{r}(t)) \cdot \vec{r}^{\,\prime}(t) \, \mathrm{d}t$$
Since $\Phi$ is the potential function of $f$,
$$\int_a^b f(\vec{r}(t)) \cdot \vec{r}^{\,\prime}(t) \, \mathrm{d}t = \int_a^b \nabla \Phi(\vec{r}(t)) \cdot \vec{r}^{\,\prime}(t) \, \mathrm{d}t,$$
and with the substitution $\omega=r(t)$, $\mathrm{d}\omega=r^{\prime}(t)\,\mathrm{d}t$,
$$\int_a^b \nabla \Phi(\vec{r}(t)) \cdot \vec{r}^{\,\prime}(t) \, \mathrm{d}t = \int_{\omega_1}^{\omega_2}\bigl[\Phi(\omega)\bigr]'\,\mathrm{d}\omega,$$
and since $\omega_1=\vec{r}(a)$ and $\omega_2=\vec{r}(b)$, the fundamental theorem of calculus gives
$$\int_C f \cdot \mathrm{d}\vec{r} = \Phi(\omega_2) - \Phi(\omega_1) = \Phi(\vec{r}(b)) - \Phi(\vec{r}(a)). \quad\Box$$
Is this proof complete? Can you explain why the equality
$$\int_a^b \nabla \Phi(\vec{r}(t)) \cdot \vec{r}^{\,\prime}(t) \, \mathrm{d}t = \int_{\omega_1}^{\omega_2}\bigl[\Phi(\omega)\bigr]'\,\mathrm{d}\omega,$$
holds? Though I can see it intuitively, I seek a more mathematically formal reasoning.

Top   Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta 