It is currently Mon Sep 16, 2019 5:38 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Vector equation
PostPosted: Tue Nov 10, 2015 9:09 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Let \( \mathbf{a, b, c} \in \mathbb{R}^3 \) be three vectors. Solve the equation:

$$\mathbf{x+(x\cdot a)b = c}$$

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

 Post subject: Re: Vector equation
PostPosted: Fri Jan 15, 2016 5:26 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Tolaso J Kos wrote:
Let \( \mathbf{a, b, c} \in \mathbb{R}^3 \) be three vectors. Solve the equation:

$$\mathbf{x+(x\cdot a)b = c}$$



Here is a solution:

Successively we have:


$$\begin{align*}

\mathbf{x+ (x\cdot a)b=c} &\Rightarrow \mathbf{x \cdot a+ (x\cdot a)\cdot (a\cdot b)=a\cdot c} \\

&\Rightarrow \mathbf{x\cdot a= \frac{a\cdot c}{1+a\cdot b}} \\

&\Rightarrow \mathbf{x=c - \frac{a\cdot c}{1+a\cdot b}b}

\end{align*}$$


The last solution verifies the initial if an only if $1+ \mathbf{a\cdot b} \neq 0$. We are investigating further.


Investigation


If $\mathbf{1+a\cdot b}=0$ then $\mathbf{x}=m\mathbf{b}+n \mathbf{c}$ so the initial equation is transfmored into:


$$m\mathbf{b}+n \mathbf{c}+ \left ( -m +n \cdot \mathbf{a\cdot c} \right )\cdot \mathbf{b}=\mathbf{c}$$

or in a more simplified form: $\displaystyle n \mathbf{c}+ n \mathbf{(a\cdot c)\cdot b}=\mathbf{c}$.



  • If $\mathbf{a \cdot c}=0$ then $n=1$ hence $\mathbf{x}=m \mathbf{b} +\mathbf{c} , \;\; m \in \mathbb{R}$.
  • If $\mathbf{a \cdot c}\neq 0$ and $\mathbf{b, c}$ not collinear then the initial equation is obviously impossible .
  • If $\mathbf{a\cdot c} \neq 0$ and $\mathbf{b, c}$ are collinear then the equation is transformed to: $$ k \mathbf{b}+ \left ( k \mathbf{b \cdot a} \right )\cdot b = \ell \mathbf{b}\Rightarrow \ell \mathbf{b}=0 \Rightarrow \mathbf{b}=0 \; {\rm or} \; \mathbf{c}=0$$

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net