Prove that $\displaystyle \overrightarrow{\mathrm{AE}} = \frac{1}{\beta-\gamma} \left ( \beta \overrightarrow{\mathrm{AB}} -\gamma \overrightarrow{\mathrm{A} \Gamma} \right )$.
Equality of vectors
Equality of vectors
In the following figure $\mathrm{AE}$ is the exterior angle bisector of the angle $\mathrm{A}$ of the triangle $\mathrm{AB} \Gamma$.
Prove that $\displaystyle \overrightarrow{\mathrm{AE}} = \frac{1}{\beta-\gamma} \left ( \beta \overrightarrow{\mathrm{AB}} -\gamma \overrightarrow{\mathrm{A} \Gamma} \right )$.
Prove that $\displaystyle \overrightarrow{\mathrm{AE}} = \frac{1}{\beta-\gamma} \left ( \beta \overrightarrow{\mathrm{AB}} -\gamma \overrightarrow{\mathrm{A} \Gamma} \right )$.
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
Tags:
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 1 guest