- $\mathbf{a} \cdot \mathbf{a} ' = \mathbf{b} \cdot \mathbf{b} ' = \mathbf{c} \cdot \mathbf{c} ' = 1$.
- $\left [ \mathbf{a,b, c} \right ] \left [ \mathbf{a}' , \mathbf{b}' , \mathbf{c}' \right ] = 1$.
Vector algebra
- Tolaso J Kos
- Administrator
- Posts: 867
- Joined: Sat Nov 07, 2015 6:12 pm
- Location: Larisa
- Contact:
Vector algebra
Let $\mathbf{a} , \mathbf{b}, \mathbf{c}$ be three non coplanar vector. If $\displaystyle{\mathbf{a}' = \frac{\mathbf{b} \times \mathbf{c}}{\left [ \mathbf{a,b, c} \right ]} \; , \; \mathbf{b}' = \frac{\mathbf{c} \times \mathbf{a}}{\left [ \mathbf{a,b, c} \right ]} \; , \; \mathbf{c}' = \frac{\mathbf{a} \times \mathbf{b}}{\left [ \mathbf{a,b, c} \right ]}}$ then prove that:
Imagination is much more important than knowledge.
Tags:
Create an account or sign in to join the discussion
You need to be a member in order to post a reply
Create an account
Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute
Sign in
Who is online
Users browsing this forum: No registered users and 3 guests