Welcome to mathimatikoi.org;a forum of university mathematics. Enjoy your stay here.

Computation of determinant

Linear Algebra
Post Reply
User avatar
Riemann
Articles: 0
Posts: 168
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

Computation of determinant

#1

Post by Riemann » Tue Oct 16, 2018 10:26 am

Let $A, B \in \mathcal{M}_{2 \times 2}$ be matrices with integer entries such that $AB = BA$ , $\det \left( A + B \right) =2$ and $\det \left( A^3 + B^3 \right) = 2^3$. Evaluate the determinant


$$\mathcal{D} = \det \left( A^2 + B^2 \right)$$
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
Post Reply