It is currently Thu Jun 20, 2019 4:21 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 2 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: Eigenvalues of Symmetric MatricesPosted: Mon Dec 03, 2018 5:44 pm

Joined: Mon Dec 03, 2018 4:59 pm
Posts: 4
For any two symmetric $n\times n$ matrices $A$ and $B$ be their eigenvalues be ordered from largest to smallest . How to prove that for eigenvalues $|\lambda _k^A-\lambda _k^B|\le ||A-B||$ for $1\le k\le n$. Where $\lambda _k^A,\lambda _k^B$ are respective eigenvalues of $A$ and $B$

Top

 Post subject: Re: Eigenvalues of Symmetric MatricesPosted: Mon Dec 03, 2018 10:12 pm

Joined: Mon Nov 09, 2015 11:52 am
Posts: 77
Location: Limassol/Pyla Cyprus
This follows from the following characterisation of the eigenvalues of symmetric matrices.

$\lambda_k(A) = \min_{\dim(U) = n-k+1} \max_{0 \neq x \in U} \frac{x^TAx}{\|x\|_2}$

Here the minimum is taken over all subspaces $U$ of $\mathbb{R}^n$ of dimension $n-k+1$. (I chose to write $\lambda_K(A)$ rather than $\lambda_k^A$.) The proof of this uses the fact that symmetric matrices have an orthonormal basis of eigenvectors.

Now,

\begin{aligned} \lambda_k(A) &= \min_{\dim(U) = n-k+1} \max_{0 \neq x \in U} \frac{x^TAx}{\|x\|_2} \\ &= \min_{\dim(U) = n-k+1} \max_{0 \neq x \in U} \frac{x^T(A-B+B)x}{\|x\|_2} \\ &= \min_{\dim(U) = n-k+1} \max_{0 \neq x \in U} \left[ \frac{x^TBx}{\|x\|_2} + \frac{x^T(A-B)x}{\|x\|_2}\right] \\ &\leqslant \min_{\dim(U) = n-k+1} \max_{0 \neq x \in U} \left[ \frac{x^TBx}{\|x\|_2} + \|A-B\|\right] \\ &= \lambda_k(B) + \|A-B\| \end{aligned}

So $\lambda_k(A) - \lambda_K(B) \leqslant \|A-B\|$. Analogously we have $\lambda_k(B) - \lambda_K(A) \leqslant \|A-B\|$

This inequality is a particular case of Weyl's Inequalities

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta