On group theory

Groups, Rings, Domains, Modules, etc, Galois theory
Post Reply
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

On group theory

#1

Post by Papapetros Vaggelis »

1. Let \(\displaystyle{n\in\mathbb{N}\,\,,n\geq 3}\) . Prove that there exists a finite group \(\displaystyle{\left(G,\cdot\right)}\) which contains two elements \(\displaystyle{x\,,y}\) of order \(\displaystyle{2}\) but their product \(\displaystyle{x\cdot y}\) is of order \(\displaystyle{n}\) .


2. Give an example of an infinite group \(\displaystyle{\left(G,\cdot\right)}\) having the property :
Each element of \(\displaystyle{G}\) is of finite order.
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: On group theory

#2

Post by Papapetros Vaggelis »

Answer for the first one :

Consider the finite group \(\displaystyle{\left(GL_{2}(\mathbb{Z_{n}}),\cdot\right)}\) .

Let \(\displaystyle{A=\begin{pmatrix}
-1 &1 \\
0& 1
\end{pmatrix}\,\,,B=\begin{pmatrix}
-1 &0\\
0&1
\end{pmatrix}\in GL_{2}(\mathbb{Z}_{n})}\) .

We have that :

\(\displaystyle{A^2=\begin{pmatrix}
-1 &1 \\
0&1
\end{pmatrix}\cdot \begin{pmatrix}
-1&1 \\
0&1
\end{pmatrix}=\begin{pmatrix}
1&0 \\
0&1
\end{pmatrix}=I_{2}}\)

and

\(\displaystyle{B^2=\begin{pmatrix}
-1 &0 \\
0&1
\end{pmatrix}\cdot \begin{pmatrix}
-1&0 \\
0&1
\end{pmatrix}=\begin{pmatrix}
1&0 \\
0&1
\end{pmatrix}=I_{2}}\)

so : \(\displaystyle{o(A)=o(B)=2}\)

However,

\(\displaystyle{A\cdot B=\begin{pmatrix}
1&1 \\
0&1
\end{pmatrix}}\)

and by induction \(\displaystyle{(A\cdot B)^{m}=\begin{pmatrix}
1&m \\
0&1
\end{pmatrix}\,\,,\forall\,m\in\mathbb{N}}\)

so : \(\displaystyle{o(A\cdot B)=n}\) .
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: On group theory

#3

Post by Grigorios Kostakos »

Answer for the second: \[\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2\times\cdots\]
Every non-zero element has inverse itself and, therefore, has order \(2\).
Grigorios Kostakos
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: On group theory

#4

Post by Papapetros Vaggelis »

Thank you Grigorios. More analytically :

The set \(\displaystyle{\prod_{n=1}^{\infty}\mathbb{Z}_{2}}\) contains all the sequences

\(\displaystyle{x:\mathbb{N}\longrightarrow \mathbb{Z}_{2}}\) .

If \(\displaystyle{x\,,y\in\prod_{n=1}^{\infty}\mathbb{Z}_{2}}\), then we define

\(\displaystyle{x+y:\mathbb{N}\longrightarrow \mathbb{Z}_{2}}\) by \(\displaystyle{(x+y)_{n}=x_{n}+y_{n}}\) .

Then, the pair \(\displaystyle{\left(\prod_{n=1}^{\infty}\mathbb{Z}_{2},+\right)}\) is an abelian group with the sequence

\(\displaystyle{\mathbb{O}:\mathbb{N}\longrightarrow \mathbb{Z}_{2}\,\,,\mathbb{O}(n)=\left[0\right]_{2}}\)

be the zero element. If \(\displaystyle{n\in\mathbb{N}}\) then we define :

\(\displaystyle{x_{n}:\mathbb{N}\longrightarrow \mathbb{Z}_{2}\,\,,x_{n}(i)=\left[1\right]_{n}\,,i=n\,\,\,,x_{n}(i)=\left[0\right]_{n}\,\,,i\neq n}\)

and thus :

\(\displaystyle{\left\{x_{n}\in\prod_{k=1}^{\infty}\mathbb{Z}_{2}: n\in\mathbb{N}\right\}\subseteq \prod_{k=1}^{\infty}\mathbb{Z}_{2}}\)

which means that \(\displaystyle{\left|\mathbb{Z}_{2}\times \mathbb{Z}_{2}\times...\right|=\infty}\) .

Finally, if \(\displaystyle{x\in\prod_{n=1}^{\infty}\mathbb{Z}_{2}-\left\{\mathbb{O}\right\}}\) , then

\(\displaystyle{\forall\,n\in\mathbb{N}: 2\,x_{n}=x_{n}+x_{n}=\left[0\right]_{2}=\mathbb{O}(n)\implies 2\,x=\mathbb{O}}\) .
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 8 guests