It is currently Tue Dec 18, 2018 10:43 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Centre of dihedral group
PostPosted: Thu May 18, 2017 12:19 am 

Joined: Sat Nov 14, 2015 6:32 am
Posts: 155
Location: Melbourne, Australia
Let $n \geq 1 $ and let $\mathcal{D}_{2n}$ be the dihedral group of order $2n$. Find $\mathcal{Z}(\mathcal{D}_{2n})$ that is the centre of $\mathcal{D}_{2n}$.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$


Top
Offline Profile  
Reply with quote  

PostPosted: Thu May 18, 2017 1:51 am 
Team Member
User avatar

Joined: Mon Nov 09, 2015 1:36 am
Posts: 454
Location: Ioannina, Greece
All the distinct elements of the $n$-dihedral group $${\cal{D}}_{2n}=\left\langle{\rho,\,\tau \ | \ \rho^{n}=\tau^2={\rm{id}}, \ \tau\rho\tau=\rho^{n-1}}\right\rangle$$ are of the form $\rho^{k}\tau^{m}\,,\; k\in\{0,1,\ldots,n-1\},\; m\in\{0,1\}$.

For $n=1$, we have $Z({\cal{D}}_{2})=\{{\rm{id}},\tau\}={\cal{D}}_{2}$.

For $n>1$: To be the element $\rho^{k}\,,\; k\in\{1,\ldots,n-1\}$ in the center $Z({\cal{D}}_{2n})$ must hold: \begin{align*}
\rho^{k}\tau=\tau\rho^{k}\quad&\Rightarrow\quad \tau\rho^{n-k}=\tau\rho^{k}\\
&\Rightarrow\quad \rho^{n-k}=\rho^{k}\\
&\Rightarrow\quad n-k=k\\
&\Rightarrow\quad k=\frac{n}{2}\,.
\end{align*} So, if $n>1$ is odd, does not exists $k\in\{1,\ldots,n-1\}$ such that $\rho^{k}\in Z({\cal{D}}_{2n})$ and if $n$ is even, only the element $\rho^{\frac{n}{2}}$ may be in $Z({\cal{D}}_{2n})$. Because for every $s\in\{1,\ldots,n-1\}$: $\rho^{\frac{n}{2}}\rho^{s}=\rho^{s}\rho^{\frac{n}{2}}$, we conclude that if $n$ is even, then $\rho^{\frac{n}{2}}\in Z({\cal{D}}_{2n})$.
To be the element $\rho^{k}\tau\,,\; k\in\{1,\ldots,n-1\}$ in the center $Z({\cal{D}}_{2n})$, for every $s\in\{1,\ldots,n-1\}$ must hold:
\begin{align*}
\rho^{k}\tau\rho^{s}=\rho^{s}\rho^{k}\tau\quad&\Longrightarrow\quad \rho^{k}\rho^{n-s}\tau=\rho^{k+s}\tau\\
&\stackrel{s=1}{\Longrightarrow}\quad \rho^{k}\rho^{n-1}\tau=\rho^{k+1}\tau\\
&\Longrightarrow\quad \rho^{k+n-1}=\rho^{k+1}\\
&\Longrightarrow\quad n=2\,. \end{align*}
Finaly, if $n=1$, then $Z({\cal{D}}_{2})={\cal{D}}_{2}$, if $n>1$ is odd, then $Z({\cal{D}}_{2n})=\{{\rm{id}}\}$, if $n=2$, then $Z({\cal{D}}_{4})={\cal{D}}_{4}$ and if $n>2$ is even, then $Z({\cal{D}}_{2n})=\{\rho^{\frac{n}{2}},{\rm{id}}\}$.

_________________
Grigorios Kostakos


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net