It is currently Thu Jun 20, 2019 11:56 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 3 posts ] 
Author Message
 Post subject: help with isomorphism
PostPosted: Fri Feb 24, 2017 8:44 pm 

Joined: Fri Feb 24, 2017 8:38 pm
Posts: 2
I have a hard time to show the following isomorphism anyone can help me with the type $f : G\to {\mathbb{Q}}^{*}$ .

Show that the group $G={\mathbb{Q}}\setminus \{−1/2\}$ with binary operation $x\ast y=x+y+2xy$ is isomorphic to ${\mathbb{Q}}\setminus \{0\}$ with multiplication.
Also find a subgroup $H\leq G$, such that $G/H\cong {\mathbb{Z}}_2$ (the group with two elements)


Top
Offline Profile  
Reply with quote  

PostPosted: Sat Feb 25, 2017 2:44 am 
Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Hi Tredy.

Firstly, if \(\displaystyle{x\,,y\in G}\), then

\(\displaystyle{\begin{aligned}x\star y+\dfrac{1}{2}&=x+y+2\,x\,y+\dfrac{1}{2}\\&= \dfrac{2\,x+1}{2}+\dfrac{2\,y\,(2\,x+1)}{2}\\&=\dfrac{(2\,y+1)\,(2\,x+1)}{2}\\&\neq 0\end{aligned}}\)

so, \(\displaystyle{x\star y\neq -\dfrac{1}{2}\implies x\star y\in G}\).

Let \(\displaystyle{x\,,y\,,z\in G}\). Then,

\(\displaystyle{\begin{aligned}(x\star y)\star z&=(x+y+2\,x\,y)\star z\\&=x+y+2\,x\,y+z+2\,(x+y+2\,x\,y)\,z\\&=x+y+2\,x\,y+z+2\,x\,z+2\,y\,z+4\,x\,y\,z \end{aligned}}\)

and

\(\displaystyle{\begin{aligned}x\star (y\star z)&=x\star (y+z+2\,y\,z)\\&=x+y+z+2\,y\,z+2\,x\,(y+z+2\,y\,z)\\&=x+y+z+2\,y\,z+2\,x\,y+2\,x\,z+4\,x\,y\,z\\&=(x\star y)\star z \end{aligned}}\)

Also, \(\displaystyle{0\in G}\) and \(\displaystyle{x\star 0=x+0+2\,x\,0=x=0\star x}\).

Obviously, the operation \(\displaystyle{\star}\) is abelian at \(\displaystyle{G}\).

Finally, let \(\displaystyle{x\in G}\). Then, \(\displaystyle{y=\dfrac{-x}{2\,x+1}\in G}\) and

\(\displaystyle{2\,x\,y+y=-x\iff x+y+2\,x\,y=0\iff x\star y=0=y\star x}\), so

\(\displaystyle{x^{-1}=-\dfrac{x}{2\,x+1}}\).

Therefore, \(\displaystyle{\left(G,\star\right)}\) is an abelian group.

Now, define \(\displaystyle{f:G=\mathbb{Q}\setminus \left\{-1/2\right\}\to \mathbb{Q}^{\star}}\)

by \(\displaystyle{f(x)=\dfrac{1}{2\,x+1}}\). Obviously, \(\displaystyle{f}\) is \(\displaystyle{1-1}\).

If \(\displaystyle{x\,,y\in G}\), then,

\(\displaystyle{f(x\star y)=f(x+y+2\,x\,y)=\dfrac{1}{2\,(x+y+2\,x\,y)+1}}\) and

\(\displaystyle{\begin{aligned} f(x)\,f(y)&=\dfrac{1}{2\,x+1}\,\dfrac{1}{2\,y+1}\\&=\dfrac{1}{4\,x\,y+2\,x+2\,y+1}\\&=\dfrac{1}{2\,(x+y+2\,x\,y)+1}\\&=f(x\star y)\end{aligned}}\).

Therefore, the function \(\displaystyle{f}\) is a group monomorphism.

Finally, let \(\displaystyle{y\in\mathbb{Q}^{\star}}\). Then,

\(\displaystyle{\begin{aligned}f(x)=y&\iff \dfrac{1}{2\,x+1}=y\\&\iff 2\,x+1=\dfrac{1}{y}\\&\iff 2\,x=\dfrac{1-y}{y}\\&\iff x=\dfrac{1-y}{2\,y} \end{aligned}}\)

where \(\displaystyle{x=\dfrac{1-y}{2\,y}\in G}\). Indeed,

\(\displaystyle{x+\dfrac{1}{2}=\dfrac{1-y}{2\,y}+\dfrac{y}{2\,y}=\dfrac{1}{2\,y}\neq 0}\)

So, \(\displaystyle{f}\) is an isomorphism and \(\displaystyle{\left(G,\star\right)\cong \left(\mathbb{Q}^{\star},\cdot\right)}\).

Let \(\displaystyle{H=\mathbb{Q}\cap \left(-\dfrac{1}{2},+\infty\right)\subseteq G}\). We have

that \(\displaystyle{e_{G}=0\in H}\). Also, if \(\displaystyle{x\,,y\in H}\), then,

\(\displaystyle{\begin{aligned} x\star y^{-1}&=x\star \left(-\dfrac{y}{2\,y+1}\right)\\&=x-\dfrac{y}{2\,y+1}+2\,x\,\dfrac{-y}{2\,y+1}\\&=\dfrac{2\,x\,y+x-y-2\,x\,y}{2\,y+1}\\&=\dfrac{x-y}{2\,y+1}>-\dfrac{1}{2}\\&\iff \dfrac{x-y}{2\,y+1}+\dfrac{1}{2}>0\\&\iff \dfrac{2\,x-2\,y+2\,y+1}{2\,(2\,y+1)}>0\\&\iff \dfrac{2\,x+1}{2\,(2\,y+1)}>0\end{aligned}}\)

and the last one is true.

So, \(\displaystyle{H\leq G}\).

Define \(\displaystyle{g:G\to \mathbb{Z}_{2}\,,g(x)=0\,,x>-\dfrac{1}{2}\,\,\,,g(x)=1\,,x<-\dfrac{1}{2}}\).

If \(\displaystyle{x\,,y\in G}\), then,

\(\displaystyle{x\star y+\dfrac{1}{2}=\dfrac{(2\,y+1)\,(2\,x+1)}{2}}\) and

\(\displaystyle{x\in H\,\,\land\,\,y\in H\implies g(x\star y)=0=g(x)+g(y)}\)

\(\displaystyle{x\in H\,\,\land\,\, y\notin H\implies g(x\star y)=1=g(x)+g(y)}\)

\(\displaystyle{x\notin H\,\,\land\,\, y\notin H\implies g(x\star y)=0=1+1=g(x)+g(y)}\).

In any case, \(\displaystyle{g(x\star y)=g(x)+g(y)}\), so \(\displaystyle{g}\) : homomorphism

which is onto \(\displaystyle{\mathbb{Z}_{2}}\). Also,

\(\displaystyle{\rm{Ker}(g)=\left\{x\in G\,,g(x)=0\right\}=H}\) and according to the 1st Isomorphism

Theorem, \(\displaystyle{\left(G/H,\star\right)\cong \left(\mathbb{Z}_{2},+\right)}\).


Top
Offline Profile  
Reply with quote  

PostPosted: Sat Feb 25, 2017 10:17 am 

Joined: Fri Feb 24, 2017 8:38 pm
Posts: 2
really impressive...well done.Respect


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 3 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 3 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net