It is currently Fri Jan 18, 2019 4:19 pm

 All times are UTC [ DST ]

 Page 1 of 1 [ 3 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: help with isomorphismPosted: Fri Feb 24, 2017 8:44 pm

Joined: Fri Feb 24, 2017 8:38 pm
Posts: 2
I have a hard time to show the following isomorphism anyone can help me with the type $f : G\to {\mathbb{Q}}^{*}$ .

Show that the group $G={\mathbb{Q}}\setminus \{−1/2\}$ with binary operation $x\ast y=x+y+2xy$ is isomorphic to ${\mathbb{Q}}\setminus \{0\}$ with multiplication.
Also find a subgroup $H\leq G$, such that $G/H\cong {\mathbb{Z}}_2$ (the group with two elements)

Top

 Post subject: Re: help with isomorphismPosted: Sat Feb 25, 2017 2:44 am
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Hi Tredy.

Firstly, if $\displaystyle{x\,,y\in G}$, then

\displaystyle{\begin{aligned}x\star y+\dfrac{1}{2}&=x+y+2\,x\,y+\dfrac{1}{2}\\&= \dfrac{2\,x+1}{2}+\dfrac{2\,y\,(2\,x+1)}{2}\\&=\dfrac{(2\,y+1)\,(2\,x+1)}{2}\\&\neq 0\end{aligned}}

so, $\displaystyle{x\star y\neq -\dfrac{1}{2}\implies x\star y\in G}$.

Let $\displaystyle{x\,,y\,,z\in G}$. Then,

\displaystyle{\begin{aligned}(x\star y)\star z&=(x+y+2\,x\,y)\star z\\&=x+y+2\,x\,y+z+2\,(x+y+2\,x\,y)\,z\\&=x+y+2\,x\,y+z+2\,x\,z+2\,y\,z+4\,x\,y\,z \end{aligned}}

and

\displaystyle{\begin{aligned}x\star (y\star z)&=x\star (y+z+2\,y\,z)\\&=x+y+z+2\,y\,z+2\,x\,(y+z+2\,y\,z)\\&=x+y+z+2\,y\,z+2\,x\,y+2\,x\,z+4\,x\,y\,z\\&=(x\star y)\star z \end{aligned}}

Also, $\displaystyle{0\in G}$ and $\displaystyle{x\star 0=x+0+2\,x\,0=x=0\star x}$.

Obviously, the operation $\displaystyle{\star}$ is abelian at $\displaystyle{G}$.

Finally, let $\displaystyle{x\in G}$. Then, $\displaystyle{y=\dfrac{-x}{2\,x+1}\in G}$ and

$\displaystyle{2\,x\,y+y=-x\iff x+y+2\,x\,y=0\iff x\star y=0=y\star x}$, so

$\displaystyle{x^{-1}=-\dfrac{x}{2\,x+1}}$.

Therefore, $\displaystyle{\left(G,\star\right)}$ is an abelian group.

Now, define $\displaystyle{f:G=\mathbb{Q}\setminus \left\{-1/2\right\}\to \mathbb{Q}^{\star}}$

by $\displaystyle{f(x)=\dfrac{1}{2\,x+1}}$. Obviously, $\displaystyle{f}$ is $\displaystyle{1-1}$.

If $\displaystyle{x\,,y\in G}$, then,

$\displaystyle{f(x\star y)=f(x+y+2\,x\,y)=\dfrac{1}{2\,(x+y+2\,x\,y)+1}}$ and

\displaystyle{\begin{aligned} f(x)\,f(y)&=\dfrac{1}{2\,x+1}\,\dfrac{1}{2\,y+1}\\&=\dfrac{1}{4\,x\,y+2\,x+2\,y+1}\\&=\dfrac{1}{2\,(x+y+2\,x\,y)+1}\\&=f(x\star y)\end{aligned}}.

Therefore, the function $\displaystyle{f}$ is a group monomorphism.

Finally, let $\displaystyle{y\in\mathbb{Q}^{\star}}$. Then,

\displaystyle{\begin{aligned}f(x)=y&\iff \dfrac{1}{2\,x+1}=y\\&\iff 2\,x+1=\dfrac{1}{y}\\&\iff 2\,x=\dfrac{1-y}{y}\\&\iff x=\dfrac{1-y}{2\,y} \end{aligned}}

where $\displaystyle{x=\dfrac{1-y}{2\,y}\in G}$. Indeed,

$\displaystyle{x+\dfrac{1}{2}=\dfrac{1-y}{2\,y}+\dfrac{y}{2\,y}=\dfrac{1}{2\,y}\neq 0}$

So, $\displaystyle{f}$ is an isomorphism and $\displaystyle{\left(G,\star\right)\cong \left(\mathbb{Q}^{\star},\cdot\right)}$.

Let $\displaystyle{H=\mathbb{Q}\cap \left(-\dfrac{1}{2},+\infty\right)\subseteq G}$. We have

that $\displaystyle{e_{G}=0\in H}$. Also, if $\displaystyle{x\,,y\in H}$, then,

\displaystyle{\begin{aligned} x\star y^{-1}&=x\star \left(-\dfrac{y}{2\,y+1}\right)\\&=x-\dfrac{y}{2\,y+1}+2\,x\,\dfrac{-y}{2\,y+1}\\&=\dfrac{2\,x\,y+x-y-2\,x\,y}{2\,y+1}\\&=\dfrac{x-y}{2\,y+1}>-\dfrac{1}{2}\\&\iff \dfrac{x-y}{2\,y+1}+\dfrac{1}{2}>0\\&\iff \dfrac{2\,x-2\,y+2\,y+1}{2\,(2\,y+1)}>0\\&\iff \dfrac{2\,x+1}{2\,(2\,y+1)}>0\end{aligned}}

and the last one is true.

So, $\displaystyle{H\leq G}$.

Define $\displaystyle{g:G\to \mathbb{Z}_{2}\,,g(x)=0\,,x>-\dfrac{1}{2}\,\,\,,g(x)=1\,,x<-\dfrac{1}{2}}$.

If $\displaystyle{x\,,y\in G}$, then,

$\displaystyle{x\star y+\dfrac{1}{2}=\dfrac{(2\,y+1)\,(2\,x+1)}{2}}$ and

$\displaystyle{x\in H\,\,\land\,\,y\in H\implies g(x\star y)=0=g(x)+g(y)}$

$\displaystyle{x\in H\,\,\land\,\, y\notin H\implies g(x\star y)=1=g(x)+g(y)}$

$\displaystyle{x\notin H\,\,\land\,\, y\notin H\implies g(x\star y)=0=1+1=g(x)+g(y)}$.

In any case, $\displaystyle{g(x\star y)=g(x)+g(y)}$, so $\displaystyle{g}$ : homomorphism

which is onto $\displaystyle{\mathbb{Z}_{2}}$. Also,

$\displaystyle{\rm{Ker}(g)=\left\{x\in G\,,g(x)=0\right\}=H}$ and according to the 1st Isomorphism

Theorem, $\displaystyle{\left(G/H,\star\right)\cong \left(\mathbb{Z}_{2},+\right)}$.

Top

 Post subject: Re: help with isomorphismPosted: Sat Feb 25, 2017 10:17 am

Joined: Fri Feb 24, 2017 8:38 pm
Posts: 2
really impressive...well done.Respect

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 3 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: Baidu [Spider] and 2 guests

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta