Welcome to mathimatikoi.org forum; Enjoy your visit here.

Sum equals to zero

Groups, Rings, Domains, Modules, etc, Galois theory
Post Reply
Papapetros Vaggelis
Community Team
Community Team
Articles: 0
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Sum equals to zero


Post by Papapetros Vaggelis » Fri May 13, 2016 2:12 pm

Let \(\displaystyle{G}\) be a finite subgroup of \(\displaystyle{\left(GL_{n}(\mathbb{C}),\cdot\right)}\).

If \(\displaystyle{\sum_{g\in G}Tr(g)=0}\), then \(\displaystyle{\sum_{g\in G}g=\mathbb{O}}\).
User avatar
Tolaso J Kos
Administration team
Administration team
Articles: 2
Posts: 860
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa

Re: Sum equals to zero


Post by Tolaso J Kos » Fri Nov 06, 2020 6:36 am

Let us suppose that $|\mathcal{G}| = \kappa$ and $x= \frac{1}{\kappa} \sum \limits_{g \in \mathcal{G}} g $. We note that for every $h \in \mathcal{G}$ the depiction $\varphi: \mathcal{G} \rightarrow \mathcal{G}$ such that $\varphi(g)=h g $ is $1-1$ and onto. Thus:

x^2 &=\left ( \frac{1}{\kappa} \sum_{g \in \mathcal{G}} g \right )^2 \\
&= \frac{1}{\kappa^2} \sum_{g \in \mathcal{G}} \sum_{h \in \mathcal{G}} gh\\ &= \frac{1}{\kappa^2} \sum_{g \in \mathcal{G}} \sum_{h \in \mathcal{G}} g\\
&= \frac{1}{\kappa} \sum_{h \in \mathcal{G}} \left (\frac{1}{\kappa} \sum_{g \in \mathcal{G}} g \right ) \\
&= \frac{1}{\kappa} \sum_{h \in \mathcal{G}} x\\
&= \frac{1}{\kappa} \kappa x \\

Thus the matrix $x$ is idempotent; its trace equals to its class. (since we are over $\mathbb{C}$ which is a field of zero characteristic.) Hence

$${\rm rank} \;(x) = {\rm trace} \;(x) = \frac{1}{\kappa} \sum_{g \in \mathcal{G}} {\rm trace} \; (g) =0$$

This implies that $x=0$ hence $\sum \limits_{g \in \mathcal{G}} g =0$.
Imagination is much more important than knowledge.
Post Reply