It is currently Mon Jan 21, 2019 8:38 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 1 post ] 
Author Message
PostPosted: Thu Jul 14, 2016 1:39 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 838
Location: Larisa
Let \( x_n \) be a sequence in the metric space \( (X, d) \) . We define \( x_n \) to be of a bounded variation if:

$$\sum_{n=1}^{\infty}d\left ( x_n, x_{n+1} \right )<+\infty$$

Prove the following:
a) If \( x_n \) is of a bounded variation then it is a standard / basic sequence. (therefore bounded). Does the converse hold?

b) If \( x_n \) is a standard/ basic sequence , then there exists a subsequence of a bounded variation.

c) If every subsequence of \( x_n \) is of a bounded variation , then \( x_n \) is a basic/ standard sequence.

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 3 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net