It is currently Wed Oct 17, 2018 3:58 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
PostPosted: Mon Jan 18, 2016 4:10 am 

Joined: Mon Nov 09, 2015 11:52 am
Posts: 76
Location: Limassol/Pyla Cyprus
Let \(G\) be a graph on \(n\) vertices and let \(\bar{G}\) denote its complement. Show that \[\chi(G) + \chi(\bar{G}) \geqslant 2\sqrt{n}.\] Show also that equality can be achieved whenever \(n\) is a perfect square.


Top
Offline Profile  
Reply with quote  

PostPosted: Mon Jan 18, 2016 4:11 am 

Joined: Wed Nov 11, 2015 6:18 am
Posts: 4
Let \( k = \chi(G) \) and \( \bar{k} = \chi(\bar{G}) \). Consider a \(k\)-coloring of \(G\) and denote by \(n_i \) the number of vertices given the color \(i\) for \( i = 1,2, \ldots, k \). Let \(j \in \left\{ {1,2, \ldots ,k} \right\}\) be such that \({n_j} = \max \left\{ {{n_1},{n_2}, \ldots ,{n_k}} \right\}\). Clearly, we have \(n = \sum\limits_{i = 1}^k {{n_i}} \), hence
\[{n_j} \ge \frac{n}{k}.\]
If two vertices are given the same color in \(G\), then the edge they determine must be in the complementary graph \( \bar{G} \) and they must be given different colors in \( \bar{G} \). It follows that
\[\bar k \ge {n_j}.\]
Therefore, \(\bar k \ge \dfrac{n}{k}\) and
\[\boxed{\chi \left( G \right) \cdot \chi \left( {\bar G} \right) \ge n}.\]
Now, the arithmetic-geometric mean inequality implies that
\[\chi \left( G \right) + \chi \left( {\bar G} \right) \ge 2\sqrt {\chi \left( G \right) \cdot \chi \left( {\bar G} \right)} \ge 2\sqrt n \]
and the result follows.

To see that the equality can be achieved, let \( n = m^2 \). Divide the \( n \) vertices into \( m \) groups, where the vertices in each group are given the same color (so \( m \) colors are used). The edges of \( G \) are defined to be those joining vertices of different colors. Clearly, \[\chi \left( G \right) = \chi \left( {\bar G} \right) = m = \sqrt n ,\] so \[\chi \left( G \right) + \chi \left( {\bar G} \right) = 2\sqrt n .\]


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net