It is currently Tue Mar 26, 2019 3:32 pm

 All times are UTC [ DST ]

 Page 1 of 1 [ 4 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: Series and inequalityPosted: Fri Jan 01, 2016 1:50 pm

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Show that:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)}<2$$

Source

_________________
Imagination is much more important than knowledge.

Top

 Post subject: Re: Series and inequalityPosted: Fri Jan 01, 2016 1:51 pm
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Hello everybody.

We have that $\displaystyle{0<\dfrac{1}{\sqrt{n}\,(n+1)}\leq \dfrac{1}{n\,\sqrt{n}}\,,n\in\mathbb{N}}$ and thus :

$\displaystyle{\lim_{n\to +\infty}\dfrac{1}{\sqrt{n}\,(n+1)}=0}$ and the series converges since

$\displaystyle{\sum_{n=1}^{\infty}\dfrac{1}{n\,\sqrt{n}}=\sum_{n=1}^{\infty}\dfrac{1}{n^{3/2}}<\infty}$.

Also, for every $\displaystyle{n\in\mathbb{N}}$ holds:

\displaystyle{\begin{aligned} \dfrac{1}{(n+1)\,\sqrt{n}}&=\dfrac{1}{\sqrt{n}\,\sqrt{n+1}}\cdot \dfrac{1}{\sqrt{n+1}}\\&<\dfrac{1}{\sqrt{n}\,\sqrt{n+1}}\,\dfrac{2}{\sqrt{n}+\sqrt{n+1}}\\&=2\,\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\,\sqrt{n+1}}\\&=2\,\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\end{aligned}}

where

\displaystyle{\begin{aligned} 2\,\sum_{n=1}^{\infty}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)&=2\,\lim_{n\to +\infty}\,\sum_{k=1}^{n}\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\\&=2\,\lim_{n\to +\infty}\,\left[\left(1-\dfrac{1}{\sqrt{2}}\right)+\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)+...+\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\right]\\&=2\,\lim_{n\to +\infty}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\\&=2\end{aligned}}

Therefore, $\displaystyle{\sum_{n=1}^{\infty}\dfrac{1}{\sqrt{n}\,(n+1)}<2}$ .

Top

 Post subject: Re: Series and inequalityPosted: Fri Jan 01, 2016 1:53 pm
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Note

We define $\displaystyle{f:\left[1,+\infty\right)\longrightarrow \mathbb{R}}$ by $\displaystyle{f(x)=\dfrac{1}{\sqrt{x}\,(x+1)}}$ .

The function $\displaystyle{f}$ is continuous, positive and strictly decreasing at $\displaystyle{\left[1,+\infty\right)}$ with

$\displaystyle{f(1)=\dfrac{1}{2}}$ . We have that :

\displaystyle{\begin{aligned} \int_{1}^{+\infty}f(x)\,\mathrm{d}x&=\int_{1}^{\infty}\dfrac{1}{\sqrt{x}\,(x+1)}\,\mathrm{d}x\\&\stackrel{y=\sqrt{x}}{=}\int_{1}^{+\infty}\dfrac{2}{1+y^2}\,\mathrm{d}y\\&=\left[2\,\arctan\,y\right]_{1}^{+\infty}\\&=\pi-\dfrac{\pi}{2}\\&=\dfrac{\pi}{2}\end{aligned}}

According to $\displaystyle{\rm{Cauchy's}}$ criterion, the real sequence $\displaystyle{a_{n}=\sum_{k=1}^{n}f(k)-\int_{1}^{n}f(x)\,\mathrm{d}x}$

converges to $\displaystyle{\left[0,f(1)\right]=\left[0,\dfrac{1}{2}\right]}$. So,

\displaystyle{\begin{aligned} 0\leq \lim_{n\to +\infty}a_{n}\leq \dfrac{1}{2}&\implies 0\leq \sum_{n=1}^{\infty}\dfrac{1}{\sqrt{n}\,(n+1)}-\int_{1}^{+\infty}f(x)\,\mathrm{d}x\leq \dfrac{1}{2}\\&\implies \dfrac{\pi}{2}\leq \sum_{n=1}^{\infty}\dfrac{1}{\sqrt{n}\,(n+1)}\leq \dfrac{\pi+1}{2}\end{aligned}}

We deduce that $\displaystyle{\sum_{n=1}^{\infty}\dfrac{1}{\sqrt{n}\,(n+1)}\in\left[\dfrac{\pi}{2},2\right)}$ .

Top

 Post subject: Re: Series and inequalityPosted: Fri Jan 01, 2016 1:54 pm

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 841
Location: Larisa
Here is another solution to the problem:

Let $S$ denote the given sum, then:

\begin{aligned} S=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}\left ( n+1 \right )}&= \sum_{n=1}^{\infty}\frac{\sqrt{n}}{n(n+1)} \\ &=\sum_{n=1}^{\infty}\left [ \frac{\sqrt{n}}{n}- \frac{\sqrt{n}}{n+1} \right ]\\ &= \frac{\sqrt{1}}{1}+ \sum_{n=1}^{\infty} \left[ \frac{\sqrt{n+1}}{n+1}-\frac{\sqrt{n}}{n+1} \right]\\ &=1+ \sum_{n=1}^{\infty}\frac{1}{\left ( n+1 \right )\left ( \sqrt{n}+\sqrt{n+1} \right )} \\ &\overset{CS}{\leq} 1+ \frac{1}{4}\sum_{n=1}^{\infty}\left [ \frac{1}{\sqrt{n+1}(n+1)} + \frac{1}{\sqrt{n}(n+1)} \right ]\\ &= 1+ \frac{S}{4}+ \frac{1}{4}\sum_{n=2}^{\infty}\frac{1}{n^{3/2}} < 1+\frac{S}{4} +\frac{1}{4} \int_1^\infty \frac{{\rm d}x}{x^{3/2}} \end{aligned}

and the result follows.

_________________
Imagination is much more important than knowledge.

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 4 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta