It is currently Tue Nov 20, 2018 6:29 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
PostPosted: Thu Apr 27, 2017 8:31 pm 
Administrator
Administrator
User avatar

Joined: Sat Nov 07, 2015 6:12 pm
Posts: 837
Location: Larisa
Let $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ and let us denote with $\lfloor \cdot \rfloor$ the floor function. Prove that the series

$$\mathcal{S}= \sum_{n=1}^{\infty} \left(\alpha-\frac{\lfloor n\alpha \rfloor}{n}\right)$$

diverges.

_________________
Imagination is much more important than knowledge.
Image


Top
Offline Profile  
Reply with quote  

PostPosted: Sat May 26, 2018 1:00 pm 

Joined: Sat Nov 14, 2015 6:32 am
Posts: 152
Location: Melbourne, Australia
Greetings,

We are focusing on the $\alpha$' s lying in the interval $(0, 1)$. That is because each term of the series is $1$ periodic. Let $\mathbb{Z} \ni k >0$ and let $n$ be the maximal integer for which it holds

\[k-1 <n\alpha < k\]

Since it holds that $\left \{ n \alpha \right \} \geq 1-\alpha$ as well as $n \leq \frac{k}{\alpha}$ we deduce that the series has at least one term of the form $\displaystyle \frac{\alpha\left ( 1-\alpha \right )}{k}$. Since for every positive integer $k$ we have one such term , we conclude that the series diverges.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net