It is currently Thu Jun 20, 2019 3:50 am

 All times are UTC [ DST ]

 Print view Previous topic | Next topic
Author Message
 Post subject: Roots of a polynomial Posted: Thu Jun 09, 2016 8:29 am
 Team Member

Joined: Tue Nov 10, 2015 8:25 pm
Posts: 314
Let $\displaystyle f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial over $\displaystyle \mathbb{Q}$ and let $\displaystyle \mathbb{K}$ be its splitting field over $\displaystyle \mathbb{Q}.$ Suppose that the degree $\displaystyle \left[ \mathbb{K} : \mathbb{Q} \right]$ of the extension $\displaystyle \mathbb{K} / \mathbb{Q}$ is odd. Show that all roots of $\displaystyle f(x)$ are real.

Top   Post subject: Re: Roots of a polynomial Posted: Thu Jun 09, 2016 8:30 am

Joined: Mon Nov 09, 2015 11:52 am
Posts: 77
Location: Limassol/Pyla Cyprus
We observe that complex conjugation is a field automorphism of $\mathbb{K}$. If $f(x)$ has a non-real root, then $\mathbb{K}$ has a non-real element and therefore this automorphism has order $2$. Let $\mathbb{L}$ be the fixed field of the automorphism. (I.e. $\mathbb{L}=\mathbb{K} \cap \mathbb{R}$.) By the fundamental theorem of Galois theory we have that $[\mathbb{K}:\mathbb{L}]=2$ and so $[\mathbb{K}:\mathbb{Q}]=[\mathbb{K}:\mathbb{L}][\mathbb{L}:\mathbb{Q}]$ is even, a contradiction.

Top   Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending

 All times are UTC [ DST ]

Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta 