Welcome to mathimatikoi.org forum; Enjoy your visit here.

Complete lattice ?

Linear Algebra, Algebraic structures (Groups, Rings, Modules, etc), Galois theory, Homological Algebra
Post Reply
Tsakanikas Nickos
Community Team
Community Team
Articles: 0
Posts: 314
Joined: Tue Nov 10, 2015 8:25 pm

Complete lattice ?

#1

Post by Tsakanikas Nickos » Sun May 29, 2016 2:08 pm

Let \( \displaystyle C \left( \left[ 0,1 \right] \right) \) be the set of continuous real-valued functions on \( \left[ 0,1 \right] \) and define \( \; \displaystyle f \geq g \; \) if \( \displaystyle f(x) \geq g(x) \, , \, \forall x \in \left[ 0,1 \right] \; \). Show that \( \left( \displaystyle C \left( \left[ 0,1 \right] \right) \, , \, \geq \right) \) is a lattice. Is this lattice complete?
Post Reply