Welcome to mathimatikoi.org forum; Enjoy your visit here.
Complete lattice ?
-
- Community Team
- Articles: 0
- Posts: 314
- Joined: Tue Nov 10, 2015 8:25 pm
Complete lattice ?
Let \( \displaystyle C \left( \left[ 0,1 \right] \right) \) be the set of continuous real-valued functions on \( \left[ 0,1 \right] \) and define \( \; \displaystyle f \geq g \; \) if \( \displaystyle f(x) \geq g(x) \, , \, \forall x \in \left[ 0,1 \right] \; \). Show that \( \left( \displaystyle C \left( \left[ 0,1 \right] \right) \, , \, \geq \right) \) is a lattice. Is this lattice complete?