It is currently Thu Jun 20, 2019 3:51 am

 All times are UTC [ DST ]

 Print view Previous topic | Next topic
Author Message
 Post subject: An interesting result Posted: Mon Jan 18, 2016 4:07 am
 Team Member

Joined: Tue Nov 10, 2015 8:25 pm
Posts: 314
Let $\displaystyle R$ be a non zero associative ring such that

$\displaystyle \forall a \in \left( R \smallsetminus \{ 0_{R} \} \right) \; \exists \, ! \, x \in R \, : \, a = axa$

Show that $\displaystyle R$ has a unit $\displaystyle 1_{R}$ and that $\displaystyle R$ is a division ring.

Top   Post subject: Re: An interesting result Posted: Mon Jan 18, 2016 4:08 am

Joined: Sat Dec 12, 2015 11:19 am
Posts: 9
Let $\displaystyle{r_{1},r_{2}\in R : r_{1}r_{2}= 0}$ ,

if $\displaystyle{r_{1}\neq 0}$ then there exists unique $x_{1} : r_{1}= r_{1}x_{1}r_{1}$

since $\displaystyle{r_{1}\left (x_{1}+r_{2} \right )r_{1}=r_{1}x_{1}r_{1}+\left (r_{1}r_{2} \right )r_{1}=r_{1}+0=r_{1}}$ and $\displaystyle{x_{1}}$ is unique we take that

$\displaystyle{x_{1}=x_{1}+r_{2}\Rightarrow r_{2}=0}$

if $\displaystyle{r_{2}\neq 0}$ then, if $\displaystyle{r_{1}\neq0}$ from the fact that $\displaystyle{r_{1}r_{2}= 0}$ we take that
$\displaystyle{r_{2}=0}$

so $\displaystyle{r_{1}=0}$ . Thus R is an integral domain.

For each $\displaystyle{a\in R : a\neq 0}$ there is unique $\displaystyle{x}$ such that $\displaystyle{a=axa}$ multiplicating by both left and right with $\displaystyle{a}$ we take

$\displaystyle{aa=aaxa}$ and $\displaystyle{aa=axaa}$ so $\displaystyle{aaxa=axaa\Rightarrow aaxa-axaa=0\Rightarrow a\left ( ax-xa \right )a=0}$

since $\displaystyle{R}$ is an integral domain we take that $\displaystyle{ax-xa=0\Rightarrow ax=xa}$

Let $\displaystyle{c\in R,c\neq 0}$ a specific element of $\displaystyle{R}$ then $\displaystyle{c=ckc}$ for a unique $\displaystyle{k\in R}$ setting

$\displaystyle{kc=ck=e}$ and by taking a random $\displaystyle{r\in R , r\neq 0}$ we have that

$\displaystyle{r=rsr}$ for a unique $\displaystyle{s\in R\Rightarrow cr=crsr \left ( 1 \right )}$
and since $\displaystyle{c=ckc\Rightarrow cr=ckcr \left ( 2 \right )}$ .

From $\displaystyle{\left ( 1 \right ),\left ( 2 \right )\Rightarrow crsr=ckcr\Rightarrow crsr-ckcr=0\Rightarrow c\left ( rs-kc \right )r=0\Rightarrow rs-kc=0\Rightarrow rs=kc=e=rs=sr \left (3 \right )}$

so $\displaystyle{re=r\left ( sr \right )=r=\left ( rs \right )r=er}$ ,obviously $\displaystyle{0e=e0==0}$ so for each $\displaystyle{r\in R , re=r=er}$ so $\displaystyle{e}$ is the unit of $\displaystyle{R}$.

Finally equations $\displaystyle{\left (3 \right )}$ shows that for each $\displaystyle{r\in R}$ such that $\displaystyle{r\neq 0}$ there is
$\displaystyle{r^{-1}=s\in R}$.So $\displaystyle{R}$ is a division ring.

Top   Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending

 All times are UTC [ DST ]

Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta 