It is currently Mon Aug 20, 2018 9:01 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 3 posts ] 
Author Message
PostPosted: Mon Jan 18, 2016 3:52 am 
Team Member
User avatar

Joined: Mon Nov 09, 2015 1:36 am
Posts: 450
Location: Ioannina, Greece
It is possible to define a multiplication in \(\mathbb{R}^5\) such that, with the usual addition and multiplication between elements of \(\mathbb{R}\), the \(\mathbb{R}^5\) becomes a field which contains the \(\mathbb{R}\)?
Justify your answer.

NOTE: I don't have a solution for this.

_________________
Grigorios Kostakos


Top
Offline Profile  
Reply with quote  

PostPosted: Mon Jan 18, 2016 3:53 am 
Team Member

Joined: Tue Nov 10, 2015 8:25 pm
Posts: 314
Suppose that a multiplication can be defined in \( \displaystyle \mathbb{R}^5 \) so that it becomes a field extension of \( \displaystyle \mathbb{R}. \) Then \( \displaystyle \mathbb{R}^5 \) can be viewed as a vector space over \( \displaystyle \mathbb{R} \) and obviously \( \displaystyle \dim_{\mathbb{R}}\left( \mathbb{R}^5 \right) = 5. \) Therefore the degree \( \displaystyle \left[ \mathbb{R}^5 : \mathbb{R} \right ] \) of the field extension \( \displaystyle \mathbb{R}^5 / \mathbb{R} \) equals 5. Let \( \displaystyle \alpha \in \mathbb{R}^5 \smallsetminus \mathbb{R}. \) Then we have that
\[ \displaystyle 5 = \left[ \mathbb{R}^5 : \mathbb{R} \right ] = \left[ \mathbb{R}^5 : \mathbb{R}(\alpha) \right ] \left[ \mathbb{R}(\alpha) : \mathbb{R} \right ] \]
which means that either
\[ \displaystyle \left[ \mathbb{R}^5 : \mathbb{R}(\alpha) \right ] = 5 \text{ and } \big[ \mathbb{R}(\alpha) : \mathbb{R} \big ] = 1 \; (*) \]
or
\[ \displaystyle \left[ \mathbb{R}^5 : \mathbb{R}(\alpha) \right ] = 1 \text{ and } \big[ \mathbb{R}(\alpha) : \mathbb{R} \big ] = 5 \; (**) \]

- If \( \displaystyle (*) \) is true, then \( \displaystyle \left[ \mathbb{R}(\alpha) : \mathbb{R} \right ] = 1 \) means that \( \displaystyle \mathbb{R}(\alpha) = \mathbb{R} \), which is a contradiction, since \( \displaystyle \alpha \notin \mathbb{R}. \)

- If \( \displaystyle (**) \) is true, then \( \displaystyle \left[ \mathbb{R}(\alpha) : \mathbb{R} \right ] = 5 \) means that \( \displaystyle irr\left( \alpha , \mathbb{R} \right) \) is of odd degree. However, this cannot be true, since it is known that every polynomial of odd degree over \( \displaystyle \mathbb{R} \) has a real root and, thus, \( \displaystyle \partial \left( irr\left( \alpha , \mathbb{R} \right) \right) \leq 4 . \)

Hence the desired multiplication cannot be defined.


In fact, with a similar argument we can prove that there is no field extension of \( \displaystyle \mathbb{R} \) of odd degree stricktly greater that 1, which means that \( \displaystyle \mathbb{R} \) is the only field extension of \( \displaystyle \mathbb{R} \) of odd degree!


Top
Offline Profile  
Reply with quote  

PostPosted: Thu Sep 08, 2016 2:05 pm 

Joined: Fri Aug 12, 2016 4:33 pm
Posts: 15
We have
1)Every finite extension is algebraic
2)The algebraic closure of real numbers are
the complex numbers
3)Every finite extension of real numbers are
the complex numbers.


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 3 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net