$$\xymatrix @C=0.5pc @R=2.5pc{H_{n-1}(S^{n-1})\ar[dr]_{i_{*}}\ar[rr]^{id} & & H_{n-1}(S^{n-1})\\

& H_{n-1}(D^{n})\ar[ur]_{f_{*}} & }$$

Welcome to mathimatikoi.org forum; Enjoy your visit here.

## Search found 27 matches

- Thu Oct 03, 2019 10:07 am
- Forum: LaTeX code testings
- Topic: xy.jax
- Replies:
**4** - Views:
**1993**

- Sat Jun 03, 2017 8:18 pm
- Forum: Calculus
- Topic: Series & Integral
- Replies:
**3** - Views:
**1411**

### Re: Series & Integral

Two more solutions for the first series can be found here.

- Sat Jun 03, 2017 7:48 pm
- Forum: Calculus
- Topic: $\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$
- Replies:
**2** - Views:
**1273**

### Re: $\sum_{n=2}^{\infty}(-1)^n \frac{\ln n}{n} =?$

A solution given by akotronis : Let $\displaystyle{S_{n}:=\sum_{k=1}^{n}(-1)^k\frac{\ln k}{k}}$. First observe that, by Dirichlet's criterion, the series converges, because $(-1)^k$ has bounded partial sums and $\displaystyle{\frac{\ln k}{k}}$ is eventually decreasing to $0$. Therefore $$\displaysty...

- Sat May 20, 2017 1:16 pm
- Forum: Meta
- Topic: New sub-forum for Measure and Integration theory
- Replies:
**1** - Views:
**1141**

### Re: New sub-forum for Measure and Integration theory

Bien sûr! Voila!r9m wrote:Would it be a possible to have a sub-forum for 'Measure and Integration Theory' that is covered in most graduate classes?

- Sun Aug 21, 2016 8:28 pm
- Forum: Calculus
- Topic: Integral with polylogarithm
- Replies:
**1** - Views:
**820**

### Re: Integral with polylogarithm

A solution by Seraphim We note that $$\zeta(m) - {\rm Li}_m(x)= \sum_{n=1}^{\infty} \frac{1-x^n}{n^m}$$ Therefore \begin{align*} S &= \int_{0}^{1}\frac{\zeta(m)-{\rm Li}_m (x)}{1-x} \log^{m-1} x \, {\rm d}x \\ &= \sum_{n=1}^{\infty} \frac{1}{n^m} \int_{0}^{1}\frac{1-x^n}{1-x} \log^{m-1} x \, {\rm d...

- Thu Jul 14, 2016 10:44 am
- Forum: Real Analysis
- Topic: Absolute convergence criterion
- Replies:
**1** - Views:
**791**

### Re: Absolute convergence criterion

A solution may be found here.

- Mon Jul 11, 2016 4:02 pm
- Forum: Real Analysis
- Topic: \( \int_{0}^{\infty}\frac{x}{\sqrt{e^x-1}}\,dx \)
- Replies:
**1** - Views:
**689**

### Re: \( \int_{0}^{\infty}\frac{x}{\sqrt{e^x-1}}\,dx \)

*Replied ex-member by*

**aziiri**:Set \(e^x-1=t^2\) then : \

Now set \(t=\tan y\) to get : \

Now set \(t=\tan y\) to get : \

*The latter integral is widely known to be \(\frac{-\pi\ln 2}{2}\), then the result is \(I=\pi \ln 4\).*- Mon Jul 11, 2016 10:03 am
- Forum: Real Analysis
- Topic: A nice integral involving sum
- Replies:
**6** - Views:
**1849**

### Re: A nice integral involving sum

*Replied by ex-member*

**aziiri**:you just need to substitute \(2014\) with \(n\) in my solution.Tolaso J Kos wrote:I don't know if induction works, but I believe that your solution can easily be modified for that case also.

- Mon Jul 11, 2016 9:59 am
- Forum: Real Analysis
- Topic: A nice integral involving sum
- Replies:
**6** - Views:
**1849**

### Re: A nice integral involving sum

*Replied by ex-member*

**aziiri**:Yes, of course.Tolaso J Kos wrote:Azirii, can we generalize that? That is, does the identity $$\int_{-\pi}^{\pi}\left ( \sum_{k=1}^{n}\sin \left ( kx \right ) \right )^2\,dx=n\pi$$ hold?

- Mon Jul 11, 2016 9:57 am
- Forum: Real Analysis
- Topic: A nice integral involving sum
- Replies:
**6** - Views:
**1849**

### Re: A nice integral involving sum

Replied by ex-member aziiri : A possible first step is to use Lagrange's trigonometric identity: \begin{align*} \mathop{\sum}\limits_{k=1}^n {\sin(kx)}&=\frac{1}{2}\frac{\cos\frac{x}{2}-\cos\bigl({\bigl({n +\frac{1}{2}}\bigr) x}\bigr)}{\sin\frac{x}{2}}\\ &=........................\\ &=\frac{\sin\bi...