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Problems and Solutions
The source of the problems will appear along with the publication of the solutions

The Problems

V2-1 Let f : [−1, 1]→ R be an odd and Riemann integrable function such that

∫
2kπ

0

x2f(sin x)dx 6= 0 for

k ∈ N. Evaluate ∑
k≥1

∫π
0
f(sin x)dx∫

2kπ
0
x2f(sin x)dx

.

V2-2 Proposed by Spyros Kapellides Ioannina Greece

Let p(x) be a polynomial with real coefficients such that {p(n)} <
1

n
, ∀n ∈ N. Show that

p(n) ∈ Z, ∀n ∈ N.

{ · } denotes the fractional part.

V2-3 Let xn the sequence defined by xn = x2n−1
− 2, n ≥ 1 and x0 = 3. Evaluate

∑
n≥0

(
n∏
k=0

xk

)−1

,

if the series converges.
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V2-4 Let an =

(
n∏
k=0

(
n

k

)) 1

n(n+1)

.

1. Show that lim

n→+∞an = 1 and

2. evaluate lim

n→+∞ n(an − 1)

lnn
, if it exists.

V2-5 Evaluate

∫
1

0

√
4x− 4x2 tanh

−1

(√
4x− 4x2

)
dx.

V2-6 Let k be a positive integer. Show that

∑
n≥1

1

(2n− 1)(2n− 3) · · · (2n− 2k− 1)
=

(−1)k2k−1

k · k!
(
2k
k

) .
V2-7 Evaluate

n∑
k=0

(−1)k+1

(
n
k

)
2k− 1

.

V2-8 Let An,m,k :=
(−1)m−1

m2
nnm

(
n

k

)
km, where m,n are positive integers and k is a non-negative integer.

1. Can we find a sequence {am}m≥1 and n0 ∈ N such that N 3 n ≥ n0 ⇒
∣∣∣∣∣
n∑
k=0

An,m,k

∣∣∣∣∣ < am for

every m, with

+∞∑
m=1

am being convergent?

2. (*) Is it true that, in the case that lim

n→+∞
n∑
k=0

An,m,k = am ∈ R m ≥ 1 with

∑
m≥1

am convergent,

then lim

n→+∞
n∑
k=0

∑
m≥1

An,m,k =
∑
m≥1

am?

3. Evaluate

lim

n→+∞ 1

n

(
n∏
`=0

(n+ `)C
`
n

) 1

2
n

, where C`n =

(
n

`

)
,

if it exists.

Solutions

V1-1 Evaluate ∑
n≥0

n∑
k=0

(−4)k

(2k+ 1)

(
n
k

)(
2k
k

)xn
for the real values of x that the sum converges.
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Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria

∫
1

0

xk(1 − x)k dx = β(k+ 1, k+ 1) =
Γ(k+ 1)Γ(k+ 1)

Γ(2k+ 2)
=

(k!)2

(2k+ 1)!
=

1

(2k+ 1)
(
2k
k

)
It follows that

n∑
k=0

(−4)k

(2k+ 1)

(
n
k

)(
2k
k

) =

n∑
k=0

(
n

k

)
(−4)k

∫
1

0

xk(1 − x)k dx

=

∫
1

0

(
n∑
k=0

(
n

k

)
(−4x(1 − x))k

)
dx =

∫
1

0

(1 − 4x+ 4x2)n dx

=

∫
1

0

(2x− 1)2ndx =

[
(2x− 1)2n+1

2(2n+ 1)

]x=1

x=0

=
1

2n+ 1

Thus, the considered sum converges only for x ∈ [−1, 1[, and we have

∞∑
n=0

n∑
k=0

(−4)k

(2k+ 1)

(
n
k

)(
2k
k

)xn =

∞∑
n=0

xn

2n+ 1

Recalling that ∞∑
n=0

t2n+1

2n+ 1

= tanh
−1(t) and

∞∑
n=0

(−1)nt2n+1

2n+ 1

= arctan(t)

we conclude that, for x ∈ [−1, 1[, we have

∞∑
n=0

n∑
k=0

(−4)k

(2k+ 1)

(
n
k

)(
2k
k

)xn =


tanh

−1
√
x√

x
if x ∈ (0, 1),

0 if x = 0,

arctan

√
−x√

−x
if x ∈ [−1,0),

which is the desired conclusion. �

V1-2 Evaluate ∑
k≥0

(
n+ k

2k

)(
2k

k

)
(−1)k

k+ 1

for n ∈ Z.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
The basic ingredient is the following Lemma:

Lemma : If P is a polynomial such that degP < n then

n∑
k=0

(−1)k
(
n

k

)
P(k) = 0
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Proof. Indeed, using linearity, we only have to show that

n∑
k=0

(−1)k
(
n

k

)
kp = 0, for p ∈ {0, 1, . . . , n− 1}. (1)

Consider F(z) = (1−ez)n. Then F is an entire function having 0 as a zero of order n. This implies

that F(p)(0) = 0 for p ∈ {0, 1, . . . , n− 1}, and (1) follows since F(z) =

n∑
k=0

(−1)k
(
n

k

)
ekz.

Let us denote the considered sum by Sn, it is a finite sum, since the nonzero terms correspond

only to the values of k that belong to {0, 1, . . . ,max(n,−n − 1)}. Recall that for a nonnegative

integer p we have (
X

0

)
= 1, and for p > 0,

(
X

p

)
=
X(X− 1) · · · (X− p+ 1)

p!

In particular, for k > 0, we have(
−n+ k

2k

)
=

(−n+ k)(−n+ k− 1) · · · (−n− k+ 1)

(2k)!

=
(n+ k− 1)(n+ k− 2) · · · (n− k)

(2k)!
=

(
n− 1 + k

2k

)
This proves that S−n = Sn−1. And since clearly we have S0 = 1, it is sufficient to consider the case

n > 0. But, for n ≥ k ≥ 0, n ≥ 1 we have(
n+ k

2k

)(
2k

k

)
1

k+ 1

=
(n+ k)!

(k+ 1)!n!

(
n

k

)
= Pn(k)

(
n

k

)
Where

Pn(X) =
1

n!

∏
2≤j≤n

(X+ j).1

Thus, Sn =

n∑
k=0

(−1)kPn(k)

(
n

k

)
. Now, the fact that degPn ≤ n−1 implies that Sn = 0. This follows

from the Lemma. Finally, Sn = 1 for n ∈ {−1,0}, and Sn = 0 for n /∈ {−1,0}. �

Solution 2: A.K

We use that ∑
k≥0

(−1)k
(
2k

k

)
zk

k+ 1

=

√
1 + 4z− 1

2z
, |z| < 1/4 (I1)

which easily deduced by

∑
k≥0

(
2k

k

)
zk = (1 + 4z)−1/2, |z| < 1/4.

As shown in the first solution, and keeping the same notation for Sn, it is S−n = Sn−1 and trivially

S0 = 1.

1Pn(X) is considered to be 1 when n = 1.
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Now for n ≥ 1 denoting by C a circle centered at the origin with radius r > 2(
√

2 + 1), we have

Sn =
1

2πi

∑
k≥0

∫
C

(z+ 1)n+k

z2k+1
dz = 2

1

2πi

∫
C

(z+ 1)n

z

∑
k≥0

(
2k

k

)
(−1)k

k+ 1

(
z+ 1

z2

)k
dz

(I1),r>2(
√

2+1)
==========

1

2πi

∫
C

(z+ 1)n

z

√
4
z+1

z2
+ 1 − 1

2
z+1

z2

dz =
1

2πi

∫
C

(z+ 1)n−1 = 0

since (z+ 1)n−1
is entire. �

Solution 3: Another approach to this problem is using generating functions following the Snake

Oil method presented in [6]

We note that

(
x

m

)
= 0 when m < 0 or if x is a nonnegative integer < m and use

∑
k

to indicate

the summation over all integers k.

Using the known generating functions

∑
k

(
2k
k

)
k+ 1

xk =
1 − (1 − 4x)1/2

2x
(GF1)

∑
r≥0

(
r

k

)
xr =

xk

(1 − x)k+1
, k ≥ 0 (GF2)

we multiply Sn (using the same notation as above) with xn and sum over n ≥ 0 to get

∑
n≥0

Snx
n =
∑
n≥0

xn
∑
k

(
n+ k

2k

)(
2k

k

)
(−1)k

k+ 1

=
∑
k

(
2k

k

)
(−1)k

k+ 1

x−k
∑
n≥0

(
n+ k

2k

)
xn+k

=
∑
k

(
2k

k

)
(−1)k

k+ 1

x−k
∑
r≥k

(
r

2k

)
xr

(GF2)

=
1

1 − x

∑
k

(
2k

k

)
1

k+ 1

(
−x

(1 − x)2

)k
(GF1)

= −
1 − x

2x

(
1 −

√
1 +

4x

(1 − x)2

)
= 1

which means that S0 = 1 and Sn = 0 for n ≥ 1. As in the above solution the fact that S−n = Sn−1

solves the problem. �

2

the sum is finite since

(
n + k

2k

)
= 0 for k > n.
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Remarks: In [7] p.196, the evaluation of

∑
k≥0

(
n+ k

2k

)(
2k

k

)
(−1)k

k+m+ 1

, Z 3 m,n ≥ 0 is dis-

cussed using properties of the binomial coefficients.

A general result relevant to this problem holds:

If two sequences fn, ck, n, k ≥ 0 are connected by the equations

fn =
∑
k

(
n+ k

m+ 2k

)
ck, n ≥ 0,

where m ≥ 0 is fixed, then their generating functions, F and C respectively, are con-

nected by

F(x) =
xm

(1 − x)m+1
C

(
x

(1 − x)2

)
.

(See [8] p.64 or [9] for more general results.)

V1-3 Evaluate
n∑
k=0

(−1)k
(
2n+ 1

k

)
(2n+ 1 − 2k)2j+1

for j ∈ {0, . . . n− 1}.

Solution : O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria
The answer is 0.

Let us denote the considered sum by Tn(j), the change of summation variable k ← 2n + 1 − k
shows that :

Tn(j) =

n∑
k=0

(−1)k
(
2n+ 1

k

)
(2n+ 1 − 2k)2j+1 =

2n+1∑
k=n+1

(−1)k
(
2n+ 1

k

)
(2n+ 1 − 2k)2j+1

So,

2Tn(j) =

2n+1∑
k=0

(−1)k
(
2n+ 1

k

)
Pj(k)

where Pj is the polynomial Pj(X) = (2n + 1 − 2X)2j+1
. It follows that Tn(j) = 0 since degPj ≤

2n− 1 < 2n+ 1, according to the Lemma that we have proved in our solution of problem V1-2.

�

Remark: This problem occurred in an attempt to evaluate

∫+∞
0

(
sin x

x

)
2n+1

for n a positive

integer using complex analysis and has been discussed at the Greek forum www.mathematica.gr:

(see www.mathematica.gr/forum/viewtopic.php?f=111&t=11481) where two more solutions have been

given for the Lemma Omran Kouba proved here in V1-2 by Demetres Christofides.
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V1-4 For µ > 0, show that

(ln t)1/µ
+∞∑
k=1

1

t(2k−1)µ
=
Γ(1/µ)

2µ
+O

(
(t− 1)1/µ

)
(t→ 1

+).

where Γ denotes the Gamma function.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
Let fµ(x) = exp(−xµ) for x ≥ 0. Since fµ is clearly decreasing we see that, for k ≥ 1 and x > 0,

we have,

2xfµ((2k− 1)x) ≥
∫ (2k+1)x

(2k−1)x
fµ(t)dt ≥ 2xfµ((2k+ 1)x)

So, if the sum

∞∑
k=1

fµ((2k− 1)x) is denoted by Sµ(x) we have

2xSµ(x) ≥
∫∞
x

fµ(t)dt ≥ 2x(Sµ(x) − e
−xµ) (1)

But, using the change of variables t = u1/µ
we see that∫∞

0

fµ(t)dt =

∫∞
0

exp(−tµ)dt =
1

µ

∫∞
0

uµ
−1−1e−u du =

Γ(1/µ)

µ

So, (1) is equivalent to

2xe−x
µ

−

∫x
0

fµ(t) ≥ 2xSµ(x) −
Γ(1/µ)

µ
≥ −

∫x
0

fµ(t)dt (2)

Finally, since fµ is continuous at 0 we have

∫x
0

fµ(t)dt = O(x) for x → 0
+
. Thus, from (2) we

conclude that

xSµ(x) =
Γ(1/µ)

2µ
+O(x) (x→ 0

+).

Now, setting t = ex
µ

we see that x = (ln t)1/µ and the result above is equivalent to

(ln t)1/µ
∞∑
k=1

1

t(2k−1)µ
=
Γ(1/µ)

2µ
+O

(
(t− 1)1/µ

)
(t→ 1

+).

which is the desired conclusion. �

Solution 2: A.K

The (first) form of Euler MacLaurin summation formula (see [4] p.117) states that

If : [a, b]→ R where a, b ∈ Z is a continuously differentiable function, then
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b∑
k=a

f(k) =

∫b
a

f(x)dx +
f(b) + f(a)

2

+

∫b
a

(
{x}−

1

2

)
f
′
(x)dx

is valid

We apply the above to ft(x) = t−(2x−1)µ
with f

′
t(x) = −2µ ln t(2x − 1)µ−1ft(x) < 0 at first on [1, n]

and then letting n→ +∞ to get

+∞∑
k=1

1

t(2k−1)µ
=

∫+∞
1

t−(2x−1)µ dx+
1

2t
+

∫+∞
1

(
{x}−

1

2

)
f
′
t(x)dx.

Due to the constant sign of f
′
t, the last integral is in absolute value ≤ c

t
= O(1). For the first

integral, it is

∫+∞
1

t−(2x−1)µ dx
(2x−1)µ ln t=u
==========

1

2µ(ln t)1/µ

(
Γ(1/µ) −

∫
ln t

0

u1/µ−1e−u du

)
=

Γ(1/µ)

2µ(ln t)1/µ
+O(1),

since

1

2µ(ln t)1/µ

∫
ln t

0

u1/µ−1e−u du
DLH→ µ. But (ln t)1/µ = O

(
(t− 1)1/µ

)
so, collecting the above and

multiplying by (ln t)1/µ we get the result. �

Moubinool Omarjee, Lycée Henri IV, Paris proved that

lim

t→1+
(ln t)1/µ

+∞∑
k=1

t−(2k−1)µ =
Γ(1/µ)

2µ
for µ > 0.

Remark by the editor: This is a slight refinement of problem 10321 [1993, 590] of American

Mathematical Monthly where it was asked to be proved that

lim

t→1+
(ln t)1/µ

+∞∑
k=1

t−(2k−1)µ =
Γ(1/µ)

2µ
for µ > 0.

V1-5 Compute the following limits, if they exist:

1. lim

s→+∞ 1

ln s

∫+∞
0

e−
x
s
− 1

x

x
dx and

2. lim

s→+∞
(∫+∞

0

e−
x
s
− 1

x

x
dx− ln s

)
.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
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For s > 0, let F(s) be defined by

F(s) =

∫+∞
0

e−
x
s
− 1

x

x
dx

The convergence of the integral defining F(s) is straightforward. Moreover,

F(s) =

∫√s
0

e−
x
s
− 1

x

x
dx︸ ︷︷ ︸

x=
√
st

+

∫+∞
√
s

e−
x
s
− 1

x

x
dx︸ ︷︷ ︸

x=
√
s/t

= 2

∫
1

0

e
− 1√

s(t+
1

t) dt = 2

∫
1

0

e
− 2√

s
ϕ(t)

dt

where ϕ(t) =
1

2

(
t+

1

t

)
. Now, the change of variables u = ϕ(t) proves that

F(s) = 2

∫∞
1

e
− 2√

s
u

√
u2 − 1

du = 2G

(
2√
s

)
(1)

where,

G(λ) =

∫∞
1

e−λu√
u2 − 1

du (2)

Now, for λ ∈ (0, 1) we have

G(λ) =

∫∞
1

e−λu√
u2 − 1

du =

∫∞
λ

e−v√
v2 − λ2

dv (change of variables v = λu)

=

∫
1

λ

e−v√
v2 − λ2

dv+

∫∞
1

e−v√
v2 − λ2

dv

=

∫
1

λ

1√
v2 − λ2

dv+

∫
1

λ

e−v − 1√
v2 − λ2

dv+

∫∞
1

e−v√
v2 − λ2

dv

Thus,

G(λ) = ln(1 +
√

1 − λ2) − ln λ+

∫
1

λ

e−v − 1

v
dv+

∫∞
1

e−v

v
dv−H(λ) + K(λ), (3)

where

H(λ) =

∫
1

λ

(
1√

v2 − λ2

−
1

v

)
(1 − e−v)dv and K(λ) =

∫∞
1

(
1√

v2 − λ2

−
1

v

)
e−v dv

Now,

H(λ) =

∫
1

λ

(
v√

v2 − λ2

− 1

)
1 − e−v

v
dv

Using 0 < 1 − e−v ≤ v for v ∈ (0, 1) we conclude that

0 ≤ H(λ) ≤
∫

1

λ

(
v√

v2 − λ2

− 1

)
dv =

√
1 − λ2 − 1 + λ ≤ λ

On the other hand

K(λ) = λ2

∫∞
1

e−v

v
√
v2 − λ2(v+

√
v2 − λ2)

dv
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So,

0 ≤ K(λ) ≤ λ2

∫∞
1

e−v√
1 − λ2(1 +

√
1 − λ2)

dv ≤ λ2

1 − λ2

In particular, we have shown that K(λ) −H(λ) = O(λ) as λ→ 0
+
. Using this in (3) we see that

G(λ) = ln

(
2

λ

)
+

∫
1

0

e−v − 1

v
dv+

∫∞
1

e−v

v
dv+O(λ) (λ→ 0

+)

Finally, it is well-known that ∫
1

0

1 − e−v

v
dv−

∫∞
1

e−v

v
dv = γ

where γ is Euler’s constant. Thus

G(λ) = ln

(
2

λ

)
− γ+O(λ) (λ→ 0

+)

Going back to (1) we see that

F(s) = ln s− 2γ+O
(

1√
s

)
(s→ +∞)

This implies that

lim

s→∞ F(s)

ln s
= 1 and lim

s→∞(F(s) − ln s) = −2γ.

and achieves the solution of the problem. �

Solution 2:
The integral is easily seen to be convergent for s > 0. Now∫+∞

0

e−
x
s
− 1

x

x
dx =

∫√s
0

e−
x
s
− 1

x

x
dx+

∫+∞
√
s

e−
x
s
− 1

x

x
dx

and making the change of variables x = s/t for the first integral we get∫+∞
0

e−
x
s
− 1

x

x
dx = 2

∫+∞
√
s

e−
x
s
− 1

x

x
dx := 2F(s).

Since

e−
1

x = 1 +O(x−1), x ≥
√
s,

we get

e−
x
s
− 1

x

x
=
e−

x
s

x
+O

(
e−

x
s

x

)
, x ≥

√
s, s→ +∞, so

10 Typesetting : LT
E
X



Asymmetry Vol.2 January 2013

F(s) =

∫+∞
√
s

e−
x
s
− 1

x

x
dx =

∫+∞
√
s

e−
x
s

x
dx+O

(∫+∞
√
s

e−
x
s

x
dx

)

=

∫+∞
√
s

e−
x
s

x
dx+O

(∫+∞
√
s

x−2 dx

)
=

∫+∞
√
s

e−
x
s

x
dx+O

(
s−1/2

)
Furthermore,

∫+∞
√
s

e−
x
s

x
dx

x=st
====

∫+∞
s−1/2

e−t

t
dt = e−t ln t

∣∣∣∣∣
+∞
s−1/2

+

∫+∞
s−1/2

e−t ln t dt

=
1

2

e−s
−1/2

ln s+

∫+∞
0

e−t ln t dt︸ ︷︷ ︸
=γ

−

∫ s−1/2

0

e−t ln t dt

=
ln s

2

− γ−

∫ s−1/2

0

e−t ln t dt+O
(
ln s

s1/2

)

Additionally, lim

s→+∞
∫s−1/2

0
e−t ln t dt∫s−1/2

0
ln t dt

DLH
= lim

s→+∞ e−s
−1/2

ln s

ln s
= 1 so

∫ s−1/2

0

e−t ln t dt = O

(∫ s−1/2

0

ln t dt

)
= O

(
ln s

s1/2

)
and collecting we get

∫+∞
0

e−
x
s
− 1

x

x
dx = ln s− 2γ+O

(
ln s

s1/2

)
which solves the problem. �

Remark: This is a refinement of problem 6.3 p.79 of [5] which discusses the first limit and the

second solution follows the steps of the proof presented there.

V1-6 Show that the equation yey = x with y(0) = 0 defines a function y = y(x) in [0,+∞).

For this function, y(x), compute the following limits, if they exist :

1. lim

x→+∞ y(x)

ln x
,

2. lim

x→+∞ y(x) − ln x

ln(ln x)
,

3. lim

x→+∞(y(x) − ln x+ ln(ln x))
ln x

ln(ln x)
.
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Solution: M O, Lycée Henri IV, Paris
The function f(t) = tet is strictly increasing on [0,+∞[ so for any x ≥ 0 there exist a unique

solution y such that yey = x with y(0) = 0. Also, clearly lim

x→+∞y(x) = +∞. Now

ln(y(x)) + y(x) = ln x (1)

gives

lim

x→+∞ y(x)

ln x
= 1, 3 or

y(x) = ln x+ o(ln x). (2)

Plugging (2) in (1) we get

y(x) + ln(ln x+ o(ln x)) = ln x, so

y(x) + ln(ln x) + ln(1 + o(1)) = ln x

which gives

lim

x→+∞ y(x) − ln x

ln(ln x)
= −1, or

y(x) = ln x− ln(ln x) + o(ln(ln x)).

Plugging again the above in (1) gives

y(x) + ln(ln x− ln(ln x) + o(ln(ln x))) = ln x, so

y(x) + ln(ln x) + ln

(
1 −

ln(ln x)

ln x
+ o

(
ln(ln x)

ln x

))
= ln x, so

y(x) + ln(ln x) −
ln(ln x)

ln x
+ o

(
ln(ln x)

ln x

)
= ln x

and this gives

lim

x→+∞ y(x) − ln x+ ln(ln x)

ln(ln x)
ln x = 1.

�

Also solved by O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria

Remarks: This problem is discussed in [1] p.25 as well as in [2] p.206 and appears as a

problem in [3] p.63. It has also been discussed at the Greek forum www.mathematica.gr: (see

http://www.mathematica.gr/forum/viewtopic.php?f=55&t=26942 and http://www.mathematica.gr/foru

m/viewtopic.php?f=9&t=18098).

3

Editor’s note: For x big enough, (1) gives

y(x)

ln x
=

(
1 +

ln(y(x))

y(x)

)−1

and since lim

x→+∞y(x) = +∞ we get lim

x→+∞
y(x)

ln x
= 1.
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V1-7 Let an the sequence defined by an = n(n− 1)an−1 +
n(n− 1)2

2

an−2 for n ≥ 3 and a1 = 0, a2 = 1.

1. Show that lim

n→+∞ e2nan

n2n+1/2
= 2

√
π

e
, and

2. compute lim

n→+∞n
(
e2nan

n2n+1/2
− 2

√
π

e

)
if it exists.

Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria
For n ≥ 0, let λn be defined by

λn =
n!√
π

∫∞
0

(
t−

1

2

)n
e−t√
t
dt

For n ≥ 2 we have

n(n− 1)λn−1 +
n(n− 1)2

2

λn−2 =
n!√
π

∫∞
0

(n− 1)

(
t−

1

2

)n−2√
te−t dt

=
n!√
π

[(
t−

1

2

)n−1√
te−t

]∞
0

−
n!√
π

∫∞
0

(
t−

1

2

)n−1
(

1

2

√
t
−
√
t

)
e−t dt

=
n!√
π

∫∞
0

(
t−

1

2

)n
e−t√
t
dt = λn

So, we have shown that

∀n ≥ 2, λn = n(n− 1)λn−1 +
n(n− 1)2

2

λn−2. (1)

Moreover, if Γ is the well-known eulerian gamma function then, λ0 =
1√
π
Γ

(
1

2

)
= 1, and

λ1 =
1√
π

(
Γ

(
3

2

)
−

1

2

Γ

(
1

2

))
= 0 = a1

Using (1) we see that λ2 = 1 = a2. Thus, the sequence (λn)n≥1 satisfies, the same recurrence

relation as the sequence (an)n≥1, and the it has the same initial conditions. This proves that

an = λn for every n ≥ 1. So we have proved that

∀n ≥ 1, an =
n!√
π

∫∞
0

(
t−

1

2

)n
e−t√
t
dt. (2)

Now, let us define bn and cn by

bn =
n!√
π

∫
1/2

0

(
t−

1

2

)n
e−t√
t
dt =

(−1)nn!

2
n
√

2π

∫
1

0

(1 − u)nu−1/2e−u/2 du (u← t/2)

cn =
n!√
π

∫∞
1/2

(
t−

1

2

)n
e−t√
t
dt =

n!√
πe

∫∞
0

un
e−u√
u+ 1/2

du (u← t− 1/2)

13 Typesetting : LT
E
X



Asymmetry Vol.2 January 2013

so that an = bn + cn. But,∫
1

0

(1 − u)nu−1/2e−u/2 du =
1√
n

∫n
0

(
1 −

v

n

)n
v−1/2e−

v
2n dv

≤ 1√
n

∫n
0

(
1 −

v

n

)n
v−1/2 dv

≤ 1√
n

∫n
0

v−1/2e−v dv (since 1 − x ≤ e−x)

≤ 1√
n
Γ

(
1

2

)
=

√
π√
n

Thus |bn| ≤
n!

2
n
√

2n
. In particular,

bn = O
(( n

2e

)n)
. (3)

Now, let us come to cn. Note that for x > 0 we have

1

x2

(
x

2

− 1 +
1√

1 + x

)
=

1√
1 + x

(
1 +
√

1 + x
) + 1

√
1 + x

(
1 +
√

1 + x
)
2
∈
[
0,

3

8

]
So, taking x = 1/(2u), we see that

0 ≤ 4u2

(
1

4u
− 1 +

√
u√

u+ 1/2

)
≤ 3

8

or equivalently, for u > 0

0 ≤ 1√
u+ 1/2

−
1

u1/2
+

1

4u3/2
≤ 3

32u5/2

This implies that

0 ≤
∫∞
0

un
e−u√
u+ 1/2

du− Γ

(
n+

1

2

)
+

1

4

Γ

(
n−

1

2

)
≤ 3

32

Γ

(
n−

3

2

)

But Γ

(
n−

1

2

)
=

1

n− 1/2
Γ

(
n+

1

2

)
and Γ

(
n−

3

2

)
=

1

(n− 1/2)(n− 3/2)
Γ

(
n+

1

2

)
, so

∫∞
0

un
e−u√
u+ 1/2

du = Γ

(
n+

1

2

)(
1 −

1

4n
+O

(
1

n2

))
.

and, since n!Γ

(
n+

1

2

)
) =

(2n)!
√
π

2
2n

we conclude that

cn =
(2n)!√
e 2

2n

(
1 −

1

4n
+O

(
1

n2

))
.
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But, by stirling’s expansion we know that (2n)! = 2(2n)2ne−2n
√
πn

(
1 +

1

24n
+O

(
1

n2

))
, thus

e2n

n2n+1/2
cn = 2

√
π

e

(
1 +

1

24n
+O

(
1

n2

))(
1 −

1

4n
+O

(
1

n2

))
= 2

√
π

e

(
1 −

5

24n
+O

(
1

n2

))

By (3), clearly

e2n

n2n+1/2
bn = O

(
1

n2

)
so

e2n

n2n+1/2
an = 2

√
π

e

(
1 −

5

24n
+O

(
1

n2

))
.

This proves part 1, and shows that the limit in part 2 exists and is equal to −
5

12

√
π

e
. �

Solution: A.K

At first we set bn =
2an+2

(n+ 1)!(n+ 2)!
which transforms the given recurrence to

2(n+ 2)bn+2 = 2(n+ 2)bn+1 + bn, n ≥ 0 b0 = b1 = 1.

Now we calculate the generating function f(z) :=
∑
n≥0

bnz
n

of bn. We multiply the recurrence with

zn and sum for n ≥ 0 to get

2

z

∑
n≥2

nbnz
n−1 = 2

∑
n≥1

nbnz
n−1 +

2

z

∑
n≥1

bnz
n +
∑
n≥0

bnz
n, or

2

z
(f ′(z) − 1) = 2f ′(z) +

2

z
(f(z) − 1) + f(z), or

f ′(z) +

(
1

2

−
3

2(1 − z)

)
f(z) = 0

which gives, using that b0 = 1, that f(z) = e−z/2(1 − z)−3/2
.

Now, since e−z/2 is entire, expanding it around 1 we have that

f(z) := e−1/2(1 − z)−3/2 +
e−1/2

2

(1 − z)−1/2 + (1 − z)1/2g(z) (I)

where g(z) is entire and hence analytic on |z| < R with R > 1, so, setting

cn := [zn]{(1 − z)1/2} and dn := [zn]{g(z)},

we have that dn = O(εn) for some 0 < ε < 1 and furthermore, since by Stirling’s formula

15 Typesetting : LT
E
X



Asymmetry Vol.2 January 2013

cn = (−1)n
(
1/2

n

)
=

(
−1/2 + n− 1

n

)
=

(
n− 3/2

n

)
=

Γ(n− 1/2)

Γ(−1/2)Γ(n+ 1)
= O(n−3/2),

we get

∣∣∣[zn]{(1 − z)1/2g(z)}∣∣∣ =
∣∣∣∣∣∣
∑

0≤k≤n
ckdn−k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0≤k≤n/2

ckdn−k

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

n/2<k≤n

ckdn−k

∣∣∣∣∣∣
≤ max

0≤k≤n/2
|ck|

∑
n/2≤k≤n

εk + max

n/2≤k≤n
|ck|

∑
0≤k≤n/2

εk

= O
(
max{1, n−3/2}

)
O(εn/2) +O(n−3/2)O(1)

= O(n−3/2).

On account of the above, from (I), it is

bn = [zn] {f(z)} = e−1/2 [zn] {(1 − z)−3/2}+
e−1/2

2

[zn] {(1 − z)−1/2}+ [zn] {(1 − z)1/2g(z)}

= e−1/2 Γ(n+ 3/2)

Γ(3/2)Γ(n+ 1)
+
e−1/2

2

Γ(n+ 1/2)

Γ(1/2)Γ(n+ 1)
+O(n−3/2)

so, applying Stirling once more:

e2n

n2n+1/2
an =

e2n

n2n+1/2

(n− 1)!n!

2

bn−2

=
e2n

n2n+1/2

(n− 1)!n!

2

(
e−1/2 Γ(n− 1/2)

Γ(3/2)Γ(n− 1)
+
e−1/2

2

Γ(n− 3/2)

Γ(1/2)Γ(n− 1)
+O(n−3/2)

)

= 2

√
π

e
−

5

12

√
π

e
n−1 +O(n−2)

which solves the problem. �

Remark The above problem is discussed at [10] (Problem 79-5 p.350) and the second solution uses

the techniques presented at [6] (see chapter 5 ‘‘Analytic and Asymptotic Methods’’).

V1-8 If a1, . . . , an, b1, . . . , bm, b ∈ R with

n∑
k=1

|ak|+

m∑
k=1

|bk| < b, evaluate

∫+∞
0

sin(bx)

x

n∏
k=1

sin(akx)

x

m∏
k=1

cos(bkx)dx.

Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria
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Recall that

∫∞
0

sin(x)

x
dx = π/2. It follows that

∫∞
0

sin(bx)

x
dx = sgn(b)

π

2

. (1)

Now suppose that β and b are real numbers such that |β| < b. Using (1) and the fact that both

b− β and b+ β are positive we see that∫∞
0

sin(bx)

x
cos(βx)dx =

1

2

∫∞
0

sin((b+ β)x) + sin((b− β)x)

x
dx =

π

2

. (2)

Now consider real numbers α1, . . . , αp and b such that

p∑
k=1

|αk| < b. Note that

p∏
k=1

cos(αkx) =
1

2
p

p∏
k=1

(
eiαkx + e−iαkx

)
=

1

2
p

∑
A⊂Np

ei(αA−αA ′ )x,

where Np = {1, 2, . . . , p}, A ′ = Np \A and αB =
∑
k∈B

αk. So,

p∏
k=1

cos(αkx) =
1

2
p

∑
A⊂Np−1

(
ei(αA−αA ′ )x + ei(αA ′−αA)x

)
=

1

2
p−1

∑
A⊂Np−1

cos(βAx)

where βA = αA−αA ′ . The assumption implies that |βA| < b for every subset A of Np−1. So, using

(2) we obtain ∫∞
0

sin(bx)

x

p∏
k=1

cos(αkx)dx =
1

2
p−1

∑
A⊂Np−1

∫∞
0

sin(bx)

x
cos(βAx)dx =

π

2

. (3)

Now, consider real numbers a1, . . . , an, b1, . . . , bm, b such that

n∑
k=1

|ak| +

m∑
k=1

|bk| < b. Applying (3)

with p = n+m, |αk| ≤ |ak| for k = 1, . . . , n, and αn+k = bk for k = 1, . . . ,m, we obtain∫∞
0

sin(bx)

x

n∏
k=1

cos(αkx)

m∏
k=1

cos(bkx)dx =
π

2

Now, for each k ∈ {1, . . . , n}, we integrate both sides of the above equation with respect to αk from

0 to ak, we obtain ∫∞
0

sin(bx)

x

n∏
k=1

sin(akx)

x

m∏
k=1

cos(bkx)dx =
π

2

n∏
k=1

ak,

which is the desired conclusion. �

Remark This problem is discussed in [11] p.41 using complex analysis methods. Specifically, the

function F(z) =
ebzi

z

n∏
k=1

sin(akz)

z

m∏
k=1

cos(bkz) is integrated along the contour consisting of the
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semicircles γ = {z : |z| = r, Imz > 0} and Γ {z : |z| = R, Imz > 0} with R > r and the real segments

[−R,−r], [r, R].
A solution has also has been given at the Greek forum www.mathematica.gr: (see http://www.mathe

matica.gr/forum/viewtopic.php?f=9&t=7842&start=140 by Kostas Tsouvalas.)

V1-9 Evaluate lim

n→+∞
+∞∑
k=1

(−1)k

n
√
kk

, if it exists.

(if the limit exists and is a real number `, can we make a better estimate than

+∞∑
k=1

(−1)k

n
√
kk

= `+o(1) ?)

Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria

We will prove that

+∞∑
k=1

(−1)k

n
√
kk

= −
1

2

+O
(
lnn

n

)
. Indeed, the convergence of the series

+∞∑
k=1

(−1)k

n
√
kk

is

ensured by the alternating series convergence test. Let the sum of this series be denoted by Gn,

and let us define the function fn on [1,+∞) by fn(x) = exp

(
−

1

n
x ln x

)
. Now we have

Gn =

∞∑
k=1

(−1)kfn(k) =

∞∑
k=1

(fn(2k) − fn(2k− 1))

= −1 +

∞∑
k=2

(−1)kfn(k) = −1 +

∞∑
k=1

(fn(2k) − fn(2k+ 1))

Thus,

2Gn + 1 =

∞∑
k=1

(2fn(2k) − fn(2k+ 1) − fn(2k− 1)) =

∞∑
k=1

an(k), (1)

where,

an(k) = 2fn(2k) − fn(2k+ 1) − fn(2k− 1). (2)

Now, using integration by parts we have∫
1

0

(u− 1)(f′′n(2k+ u) + f
′′
n(2k− u))du =

[
(u− 1)(f′n(2k+ u) − f

′
n(2k− u))

]
1

0

−

∫
1

0

(
f′n(2k+ u) − f

′
n(2k− u)

)
du

= 2fn(2k) − fn(2k+ 1) − fn(2k− 1) = an(k) (3)

So,

|an(k)| ≤
∫

1

0

(|f′′n(2k+ u)|+ |f′′n(2k− u)|)du =

∫
2k+1

2k−1

|f′′n(t)|dt

and using (1) we conclude that

|2Gn + 1| ≤
∞∑
k=1

|an(k)| ≤
∫+∞
1

|f′′n(t)|dt (3)
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Next we suppose that n > 1. Clearly,

f′n(x) = −
1

n
(1 + ln x)fn(x),

f′′n(x) =
1

n2

(
(1 + ln x)2 −

n

x

)
fn(x),

and, if g(x) = (1 + ln x)2 − n/x then g is increasing on [1,+∞) (as sum of increasing functions.)

But g(1) = 1−n < 0 and g(n) = (2+ lnn) lnn > 0, so there exists a unique real number xn ∈ (1, n)
such that g(xn) = 0. Moreover, g(x) < 0 if x ∈ [1, xn) and g(x) > 0 if x ∈ (xn,+∞). Therefore,∫∞

1

|f′′n(x)|dx = −

∫xn
1

f′′n(x)dx+

∫∞
xn

f′′n(x)dx

= f′n(1) + lim

x→+∞ f′n(x) − 2f′n(xn)

= −
1

n
− 2f′n(xn) ≤

2

n
(1 + ln xn)fn(xn).

But 1 + ln xn =

√
n

xn
, (since g(xn) = 0,) and fn(xn) < 1. Therefore, from (3) we conclude that

|Gn +
1

2

| <
1

√
nxn

. (4)

Now, suppose that n ≥ 6 so that ln(lnn) > 1/2, it follows that

g
( n

ln
2 n

)
= (1 + lnn− 2 ln(lnn))2 − ln

2 n = (1 − 2 ln(lnn))(1 + 2 lnn− 2 ln(lnn)) < 0

This proves that xn > n/ ln
2 n. So, (4) implies that

|Gn +
1

2

| <
lnn

n
for n ≥ 6.

This proves that

+∞∑
k=1

(−1)k

n
√
kk

= −
1

2

+O
(
lnn

n

)
which is the desired conclusion. �

Remark by the solver: Numerical experiment show that in fact

+∞∑
k=1

(−1)k

n
√
kk

= −
1

2

−
β

n
+O

(
1

n2

)
where β ≈ 0.265214371. But I couldn’t prove this.

Remark by A.Kotronis: The source of this problem is this discussion: http://www.artofproblemsolv

ing.com/Forum/viewtopic.php?f=67&t=379317 at the Art Of Problem Solving forum.
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