A Generalization of Riemann Sums

Omran Kouba

Abstract

We generalize the property that Riemann sums of a continuous function corresponding to equidistant subdivisions of an interval converge to the integral of that function. We then give some applications of this generalization.

Problem U131 in [1] reads:
Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\arctan \frac{k}{n}}{n+k} \cdot \frac{\varphi(k)}{k}=\frac{3 \log 2}{4 \pi}, \tag{1}
\end{equation*}
$$

where φ denotes Euler's totient function. In this note we prove the following theorem, that will, in particular, answer this question.

Theorem 1. Let α be a positive real number and let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{k=1}^{n} a_{k}=L
$$

For every continuous function f on the interval $[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) a_{k}=L \int_{0}^{1} \alpha x^{\alpha-1} f(x) d x
$$

Proof. We use the following two facts:
fact 1 for $\beta>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^{\beta}=\frac{1}{\beta+1}
$$

fact 2 if $\left(\lambda_{n}\right)_{n \geq 1}$ is a real sequence that converges to 0 , and $\beta>0$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^{\beta} \lambda_{k}=0
$$

Indeed, fact 1 is just the statement that the Riemann sums of the function $x \mapsto x^{\beta}$ corresponding to an equidistant subdivision of the interval $[0,1]$ converges to $\int_{0}^{1} x^{\beta} d x$.

The proof of fact 2 is a "Cesáro" argument. Since $\left(\lambda_{n}\right)_{n \geq 1}$ converges to 0 it must be bounded, and if we define $\Lambda_{n}=\sup _{k \geq n}\left|\lambda_{k}\right|$, then $\lim _{n \rightarrow \infty} \Lambda_{n}=0$. But, for $1<m<n$, we have

$$
\begin{aligned}
\left|\frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^{\beta} \lambda_{k}\right| & \leq \frac{1}{n^{\beta+1}} \sum_{k=1}^{m} k^{\beta}\left|\lambda_{k}\right|+\frac{1}{n^{\beta+1}} \sum_{k=m+1}^{n} k^{\beta}\left|\lambda_{k}\right| \\
& \leq \frac{m^{\beta+1}}{n^{\beta+1}} \Lambda_{1}+\Lambda_{m} .
\end{aligned}
$$

Let ϵ be an arbitrary positive number. There is an $m_{\epsilon}>0$ such that $\Lambda_{m_{\epsilon}}<\epsilon / 2$. Then we can find $n_{\epsilon}>m_{\epsilon}$ such that for every $n>n_{\epsilon}$ we have $m_{\epsilon}^{\beta+1} \Lambda_{1} / n^{\beta+1}<\epsilon / 2$. Thus

$$
n>n_{\epsilon} \Longrightarrow\left|\frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^{\beta} \lambda_{k}\right|<\epsilon .
$$

This ends the proof of fact 2.
Now, we come to the proof of our Theorem. We start by proving the following property by induction on p :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+p}} \sum_{k=1}^{n} k^{p} a_{k}=\frac{\alpha}{\alpha+p} L . \tag{2}
\end{equation*}
$$

The base property $(p=0)$ is just the hypothesis. Let us assume that this is true for a given p and let

$$
\lambda_{n}=\frac{1}{n^{\alpha+p}} \sum_{k=1}^{n} k^{p} a_{k}-\frac{\alpha L}{\alpha+p},
$$

(with the convention $\lambda_{0}=0$,) so that $\lim _{n \rightarrow \infty} \lambda_{n}=0$. Clearly,

$$
k^{p} a_{k}=k^{\alpha+p} \lambda_{k}-(k-1)^{\alpha+p} \lambda_{k-1}+\frac{\alpha L}{\alpha+p}\left(k^{\alpha+p}-(k-1)^{\alpha+p}\right),
$$

hence

$$
\begin{gathered}
k^{p+1} a_{k}=k^{\alpha+p+1} \lambda_{k}-k(k-1)^{\alpha+p} \lambda_{k-1}+\frac{\alpha L}{\alpha+p}\left(k^{\alpha+p+1}-k(k-1)^{\alpha+p}\right) \\
=k^{\alpha+p+1} \lambda_{k}-(k-1)^{\alpha+p+1} \lambda_{k-1}+\frac{\alpha L}{\alpha+p}\left(k^{\alpha+p+1}-(k-1)^{\alpha+p+1}\right) \\
-(k-1)^{\alpha+p} \lambda_{k-1}-\frac{\alpha L}{\alpha+p}(k-1)^{\alpha+p}
\end{gathered}
$$

It follows that

$$
\frac{1}{n^{\alpha+p+1}} \sum_{k=1}^{n} k^{p+1} a_{k}=\lambda_{n}-\frac{1}{n^{\alpha+p+1}} \sum_{k=1}^{n-1} k^{\alpha+p} \lambda_{k}+\frac{\alpha L}{\alpha+p}\left(1-\frac{1}{n^{\alpha+p+1}} \sum_{k=1}^{n-1} k^{\alpha+p}\right)
$$

Using fact 1 and fact 2 we conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+p+1}} \sum_{k=1}^{n} k^{p+1} a_{k}=\frac{\alpha L}{\alpha+p}\left(1-\frac{1}{\alpha+p+1}\right)=\frac{\alpha L}{\alpha+p+1} .
$$

This ends the proof of (2).
For a continuous function f on the interval $[0,1]$ we define

$$
I_{n}(f)=\frac{1}{n^{\alpha}} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) a_{k}, \quad \text { and } \quad J(f)=L \int_{0}^{1} \alpha x^{\alpha-1} f(x) d x .
$$

Now, if X^{p} denotes the function $t \mapsto t^{p}$, then (2) is equivalent to the fact that $\lim _{n \rightarrow \infty} I_{n}\left(X^{p}\right)=J\left(X^{p}\right)$, for every nonnegative integer p. Using linearity, we conclude that $\lim _{n \rightarrow \infty} I_{n}(P)=J(P)$ for every polynomial function P.

On the other hand, if $M=\sup _{n \geq 1} \frac{1}{n^{\alpha}} \sum_{k=1}^{n} a_{k}$, then $L \leq M$ and we observe that for every continuous functions f and g on $[0,1]$ and all positive integers n,

$$
\left|I_{n}(f)-I_{n}(g)\right| \leq M \sup _{[0,1]}|f-g| \quad \text { and } \quad|J(f)-J(g)| \leq M \sup _{[0,1]}|f-g| .
$$

Consider a continuous function f on $[0,1]$. Let ϵ be an arbitrary positive number. Using Weierstrass Theorem there is a polynomial P_{ϵ} such that $\left\|f-P_{\epsilon}\right\|_{\infty}=$ $\sup _{x \in[0,1]}\left|f(x)-P_{\epsilon}(x)\right|<\frac{\epsilon}{3 M}$. Moreover, since $\lim _{n \rightarrow \infty} I_{n}\left(P_{\epsilon}\right)=J\left(P_{\epsilon}\right)$, there exists an n_{ϵ} such that $\left|I_{n}\left(P_{\epsilon}\right)-J\left(P_{\epsilon}\right)\right|<\frac{\epsilon}{3}$ for every $n>n_{\epsilon}$. Therefore, for $n>n_{\epsilon}$, we have

$$
\left|I_{n}(f)-J(f)\right| \leq\left|I_{n}(f)-I_{n}\left(P_{\epsilon}\right)\right|+\left|I_{n}\left(P_{\epsilon}\right)-J\left(P_{\epsilon}\right)\right|+\left|J\left(P_{\epsilon}\right)-J(f)\right|<\epsilon .
$$

This ends the proof of Theorem 1.

Applications.

- It is known that Euler's totient function φ has very erratic behaviour, but on the mean we have the following beautiful result, see [2, 18.5],

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \varphi(k)=\frac{3}{\pi^{2}} \tag{3}
\end{equation*}
$$

Using Theorem 1 we conclude that, for every continuous function f on $[0,1]$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \varphi(k)=\frac{6}{\pi^{2}} \int_{0}^{1} x f(x) d x \tag{4}
\end{equation*}
$$

Choosing $f(x)=\frac{\arctan x}{x(1+x)}$ we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\arctan (k / n)}{k(n+k)} \varphi(k)=\frac{6}{\pi^{2}} \int_{0}^{1} \frac{\arctan x}{1+x} d x . \tag{5}
\end{equation*}
$$

Thus we only need to evaluate the integral $I=\int_{0}^{1} \frac{\arctan x}{1+x} d x$. The "easy" way to do this is to make the change of variables $x \leftarrow \frac{1-t}{1+t}$ to obtain

$$
\begin{aligned}
I & =\int_{0}^{1} \arctan \left(\frac{1-t}{1+t}\right) \frac{d t}{1+t}=\int_{0}^{1}\left(\frac{\pi}{4}-\arctan t\right) \frac{d t}{1+t} \\
& =\frac{\pi}{4} \int_{0}^{1} \frac{d t}{1+t}-I
\end{aligned}
$$

Hence, $I=\frac{\pi}{8} \log 2$. Replacing back in (5) we obtain (1).

- Similarly, if $\sigma(n)$ denotes the sum of divisors of n, then (see $[2,18.3]$),

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \sigma(k)=\frac{\pi^{2}}{12}
$$

Using Theorem 1 we conclude that, for every continuous function f on $[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \sigma(k)=\frac{\pi^{2}}{6} \int_{0}^{1} x f(x) d x
$$

Choosing for instance $f(x)=\frac{1}{1+a x^{2}}$ we conclude that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sigma(k)}{n^{2}+a k^{2}}=\frac{\pi^{2}}{12 a} \log (1+a) .
$$

- Starting from

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\varphi(k)}{k}=\frac{6}{\pi^{2}},
$$

which can be proved in the same way as (3), we conclude that, for every $\alpha \geq 0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+1}} \sum_{k=1}^{n} k^{\alpha-1} \varphi(k)=\frac{6}{\pi^{2}(1+\alpha)} \tag{6}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+1}} \sum_{k=1}^{n} k^{\alpha-1} \log (k / n) \varphi(k) & =\frac{6}{\pi^{2}} \int_{0}^{1} x^{\alpha} \log (x) d x \\
& =-\frac{6}{\pi^{2}(\alpha+1)^{2}}
\end{aligned}
$$

Hence, using (6), for $\alpha \geq 0$ we obtain:

$$
\frac{1}{n^{\alpha+1}} \sum_{k=1}^{n} k^{\alpha-1} \log k \varphi(k)=\frac{6((1+\alpha) \log n-1)}{\pi^{2}(1+\alpha)^{2}}+o(1) .
$$

References

[1] C. Lupu, Problem U131, Mathematical Reflections. (4) (2009).
[2] G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers (5th ed.), Oxford University Press. (1980).

Omran Kouba
Department of Mathematics
Higher Institute for Applied Sciences and Technology
P.O. Box 31983, Damascus, Syria.
omran_kouba@hiast.edu.sy

