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Abstract
We generalize the property that Riemann sums of a continuous function

corresponding to equidistant subdivisions of an interval converge to the integral
of that function. We then give some applications of this generalization.

Problem U131 in [1] reads:

Prove that

lim
n→∞

n∑
k=1

arctan k
n

n + k
· ϕ(k)

k
=

3 log 2
4π

, (1)

where ϕ denotes Euler’s totient function. In this note we prove the following theo-
rem, that will, in particular, answer this question.

Theorem 1. Let α be a positive real number and let (an)n≥1 be a sequence of positive
real numbers such that

lim
n→∞

1
nα

n∑
k=1

ak = L.

For every continuous function f on the interval [0, 1],

lim
n→∞

1
nα

n∑
k=1

f

(
k

n

)
ak = L

∫ 1

0
αxα−1f(x) dx.

Proof. We use the following two facts:

fact 1 for β > 0

lim
n→∞

1
nβ+1

n∑
k=1

kβ =
1

β + 1

fact 2 if (λn)n≥1 is a real sequence that converges to 0, and β > 0 then

lim
n→∞

1
nβ+1

n∑
k=1

kβλk = 0.

Indeed, fact 1 is just the statement that the Riemann sums of the function
x 7→ xβ corresponding to an equidistant subdivision of the interval [0, 1] converges
to
∫ 1
0 xβ dx.
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The proof of fact 2 is a “Cesáro” argument. Since (λn)n≥1 converges to 0 it
must be bounded, and if we define Λn = supk≥n |λk|, then limn→∞ Λn = 0. But, for
1 < m < n, we have∣∣∣∣∣ 1

nβ+1

n∑
k=1

kβλk

∣∣∣∣∣ ≤ 1
nβ+1

m∑
k=1

kβ |λk|+
1

nβ+1

n∑
k=m+1

kβ |λk|

≤ mβ+1

nβ+1
Λ1 + Λm.

Let ε be an arbitrary positive number. There is an mε > 0 such that Λmε < ε/2.

Then we can find nε > mε such that for every n > nε we have mβ+1
ε Λ1/nβ+1 < ε/2.

Thus

n > nε =⇒

∣∣∣∣∣ 1
nβ+1

n∑
k=1

kβλk

∣∣∣∣∣ < ε.

This ends the proof of fact 2.

Now, we come to the proof of our Theorem. We start by proving the following
property by induction on p :

lim
n→∞

1
nα+p

n∑
k=1

kpak =
α

α + p
L. (2)

The base property (p = 0) is just the hypothesis. Let us assume that this is true
for a given p and let

λn =
1

nα+p

n∑
k=1

kpak −
αL

α + p
,

(with the convention λ0 = 0,) so that limn→∞ λn = 0. Clearly,

kpak = kα+pλk − (k − 1)α+pλk−1 +
αL

α + p

(
kα+p − (k − 1)α+p

)
,

hence

kp+1ak = kα+p+1λk − k(k − 1)α+pλk−1 +
αL

α + p

(
kα+p+1 − k(k − 1)α+p

)
,

= kα+p+1λk − (k − 1)α+p+1λk−1 +
αL

α + p

(
kα+p+1 − (k − 1)α+p+1

)
− (k − 1)α+pλk−1 −

αL

α + p
(k − 1)α+p

It follows that

1
nα+p+1

n∑
k=1

kp+1ak = λn −
1

nα+p+1

n−1∑
k=1

kα+pλk +
αL

α + p

(
1− 1

nα+p+1

n−1∑
k=1

kα+p

)
.
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Using fact 1 and fact 2 we conclude that

lim
n→∞

1
nα+p+1

n∑
k=1

kp+1ak =
αL

α + p

(
1− 1

α + p + 1

)
=

αL

α + p + 1
.

This ends the proof of (2).

For a continuous function f on the interval [0, 1] we define

In(f) =
1
nα

n∑
k=1

f

(
k

n

)
ak, and J(f) = L

∫ 1

0
αxα−1f(x) dx.

Now, if Xp denotes the function t 7→ tp, then (2) is equivalent to the fact that
limn→∞ In(Xp) = J(Xp), for every nonnegative integer p. Using linearity, we con-
clude that limn→∞ In(P ) = J(P ) for every polynomial function P .

On the other hand, if M = supn≥1
1

nα

∑n
k=1 ak, then L ≤ M and we observe

that for every continuous functions f and g on [0, 1] and all positive integers n,

|In(f)− In(g)| ≤M sup
[0,1]
|f − g| and |J(f)− J(g)| ≤M sup

[0,1]
|f − g| .

Consider a continuous function f on [0, 1]. Let ε be an arbitrary positive num-
ber. Using Weierstrass Theorem there is a polynomial Pε such that ||f − Pε||∞ =
supx∈[0,1] |f(x)− Pε(x)| < ε

3M . Moreover, since limn→∞ In(Pε) = J(Pε), there exists
an nε such that |In(Pε)− J(Pε)| < ε

3 for every n > nε. Therefore, for n > nε, we
have

|In(f)− J(f)| ≤ |In(f)− In(Pε)|+ |In(Pε)− J(Pε)|+ |J(Pε)− J(f)| < ε.

This ends the proof of Theorem 1.

Applications.

• It is known that Euler’s totient function ϕ has very erratic behaviour, but on
the mean we have the following beautiful result, see [2, 18.5],

lim
n→∞

1
n2

n∑
k=1

ϕ(k) =
3
π2

. (3)

Using Theorem 1 we conclude that, for every continuous function f on [0, 1],

lim
n→∞

1
n2

n∑
k=1

f

(
k

n

)
ϕ(k) =

6
π2

∫ 1

0
xf(x) dx. (4)
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Choosing f(x) = arctan x
x(1+x) we conclude that

lim
n→∞

n∑
k=1

arctan(k/n)
k(n + k)

ϕ(k) =
6
π2

∫ 1

0

arctanx

1 + x
dx. (5)

Thus we only need to evaluate the integral I =
∫ 1
0

arctan x
1+x dx. The “easy” way

to do this is to make the change of variables x← 1−t
1+t to obtain

I =
∫ 1

0
arctan

(
1− t

1 + t

)
dt

1 + t
=
∫ 1

0

(π

4
− arctan t

) dt

1 + t

=
π

4

∫ 1

0

dt

1 + t
− I

Hence, I = π
8 log 2. Replacing back in (5) we obtain (1).

• Similarly, if σ(n) denotes the sum of divisors of n, then (see [2, 18.3]),

lim
n→∞

1
n2

n∑
k=1

σ(k) =
π2

12
.

Using Theorem 1 we conclude that, for every continuous function f on [0, 1],

lim
n→∞

1
n2

n∑
k=1

f

(
k

n

)
σ(k) =

π2

6

∫ 1

0
xf(x) dx.

Choosing for instance f(x) = 1
1+ax2 we conclude that

lim
n→∞

n∑
k=1

σ(k)
n2 + ak2

=
π2

12a
log(1 + a).

• Starting from

lim
n→∞

1
n

n∑
k=1

ϕ(k)
k

=
6
π2

,

which can be proved in the same way as (3), we conclude that, for every α ≥ 0,

lim
n→∞

1
nα+1

n∑
k=1

kα−1ϕ(k) =
6

π2(1 + α)
(6)
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Also,

lim
n→∞

1
nα+1

n∑
k=1

kα−1 log(k/n)ϕ(k) =
6
π2

∫ 1

0
xα log(x) dx

= − 6
π2(α + 1)2

.

Hence, using (6), for α ≥ 0 we obtain:

1
nα+1

n∑
k=1

kα−1 log k ϕ(k) =
6
(
(1 + α) log n− 1

)
π2(1 + α)2

+ o(1).
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