It is currently Tue Dec 12, 2017 3:31 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 1 post ] 
Author Message
PostPosted: Sat May 20, 2017 11:07 am 

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
If $u$ be a Harmonic Function in a open connected set $\Omega \subset \mathbb{R}^n$ and $\overline{B(x_0,R)} \subset \Omega$ (the closed ball of radius $R$ centered at $x_0 \in \Omega$).

(i) Show that: $$\int_{\partial B(0,1)} u(x_0 + ry)u(x_0 + Ry)\,d\sigma(y) = \int_{\partial B(0,1)} u^2(x_0 + cy)\,d\sigma(y)$$ where, $r \le c \le R$ and $c^2 = rR$.

(ii) Using the above identity show that if $u$ is locally constant, then it is constant in $\Omega$.

[$\partial B(0,1) \equiv S^{n-1}$ is the boundary of the unit ball in $\mathbb{R}^n$ and $\,d\sigma(y)$ is the surface measure on $\partial B(0,1)$].


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net