Existence ?

Real Analysis
Post Reply
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Existence ?

#1

Post by Papapetros Vaggelis »

Examine if there exists a \(\displaystyle{1-1}\) function \(\displaystyle{f:\mathbb{N}\to \mathbb{N}}\)

such that \(\displaystyle{\sum_{n=1}^{\infty}\dfrac{f(n)}{n^2}<\infty}\)
mathofusva
Posts: 33
Joined: Tue May 10, 2016 3:56 pm

Re: Existence ?

#2

Post by mathofusva »

We show that the series $\sum_{n=1}^\infty\,f(n)/n^2$ diverges for any bijective from $\mathbb{N}$ to $\mathbb{N}$. To see this, since $f$ is a permutation of $\mathbb{N}$, it follows that
$$f(1) + f(2) + \cdots + f(n) \geq 1 + 2 + \cdots + n = \frac{n(n+1)}{2}.$$
Thus, by Abel's summation formula, we have
\begin{eqnarray*}
\sum_{n=1}^N\,\frac{f(n)}{n^2} & = & \sum_{n=1}^{N-1}\,(f(1) + \cdots + f(n)) \left(\frac{1}{n^2}- \frac{1}{(n+1)^2}\right) + \frac{1}{N^2}\sum_{n=1}^N\,f(n)\\
& \geq & \sum_{n=1}^{N-1}\,\frac{n(n-1)}{2}\cdot \frac{2n+1}{n^2(n+1)^2} + \frac{N+1}{2N}\\
& = & \sum_{n=1}^{N-1}\,\frac{(n-1)(2n+1)}{n(n+1)^2} + \frac{N+1}{2N}\\
& \geq & \sum_{n=1}^{N-1}\,\frac{(n-1)}{n(n+1)} + \frac{1}{2}.
\end{eqnarray*}
This implies that $\sum_{n=1}^\infty\,f(n)/n^2$ diverges because $\sum_{n=1}^\infty\,\frac{(n-1)}{n(n+1)}$ diverges.

An alternative proof is based on the Cauchy criterion. Observe that, of $\{f(N+1), f(N+2), \cdots, f(3N)\}$, only $N$ of them are possibly at most $N$, the rest of them must be strictly greater than $N$. This yields the estimate
$$\sum_{n=N+1}^{3N}\,\frac{f(n)}{n^2} \geq \frac{1}{(3N)^2}\,\sum_{n=N+1}^{3N}\,f(n) > \frac{1}{9N^2}\cdot N \cdot N = \frac{1}{9}.$$
It follows that hat $\sum_{n=1}^\infty\,f(n)/n^2$ diverges again by the Cauchy criterion.
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Existence ?

#3

Post by Tolaso J Kos »

mathofusva wrote:We show that the series $\sum_{n=1}^\infty\,f(n)/n^2$ diverges for any bijective from $\mathbb{N}$ to $\mathbb{N}$. To see this, since $f$ is a permutation of $\mathbb{N}$, it follows that
$$f(1) + f(2) + \cdots + f(n) \geq 1 + 2 + \cdots + n = \frac{n(n+1)}{2}.$$
Thus, by Abel's summation formula, we have
\begin{eqnarray*}
\sum_{n=1}^N\,\frac{f(n)}{n^2} & = & \sum_{n=1}^{N-1}\,(f(1) + \cdots + f(n)) \left(\frac{1}{n^2}- \frac{1}{(n+1)^2}\right) + \frac{1}{N^2}\sum_{n=1}^N\,f(n)\\
& \geq & \sum_{n=1}^{N-1}\,\frac{n(n-1)}{2}\cdot \frac{2n+1}{n^2(n+1)^2} + \frac{N+1}{2N}\\
& = & \sum_{n=1}^{N-1}\,\frac{(n-1)(2n+1)}{n(n+1)^2} + \frac{N+1}{2N}\\
& \geq & \sum_{n=1}^{N-1}\,\frac{(n-1)}{n(n+1)} + \frac{1}{2}.
\end{eqnarray*}
This implies that $\sum_{n=1}^\infty\,f(n)/n^2$ diverges because $\sum_{n=1}^\infty\,\frac{(n-1)}{n(n+1)}$ diverges.
:clap2: :clap2:
Excellent executed mathofusva. I missed the key observation
mathofusva wrote:To see this, since $f$ is a permutation of $\mathbb{N}$, it follows that
$$f(1) + f(2) + \cdots + f(n) \geq 1 + 2 + \cdots + n = \frac{n(n+1)}{2}.$$
and then I gave up. Thank you for this nice solution.
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 11 guests