It is currently Sun Dec 17, 2017 10:59 am


All times are UTC [ DST ]




Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Line integral 01
PostPosted: Mon May 15, 2017 5:27 pm 
Team Member
User avatar

Joined: Mon Nov 09, 2015 1:36 am
Posts: 432
Location: Ioannina, Greece
Evaluate $$\displaystyle\oint_{\gamma}{{\rm{Log}}\,\big(z-\tfrac{1}{2}\big)\,dz}\,,$$ where $\gamma$ has parametric representation $$\gamma(t)=\displaystyle(1-t)\cos({t\pi})+\frac{1}{2}\,\big(-1+(2t-4)\sin(t\pi)\big)\,i\,,\quad t\in\big[-\tfrac{1}{2},\tfrac{1}{2}\big]\,.$$

_________________
Grigorios Kostakos


Top
Offline Profile  
Reply with quote  

 Post subject: Re: Line integral 01
PostPosted: Tue Jun 27, 2017 8:29 am 
Team Member
User avatar

Joined: Mon Nov 09, 2015 1:36 am
Posts: 432
Location: Ioannina, Greece
We give and a solution to that -not so difficult- exercise:

The complex function ${\rm{Log}}\,\big(z-\tfrac{1}{2}\big)$ is holomorphic on ${\mathbb{C}}\setminus\big\{z\in{\mathbb{C}}\;|\;\Re(z)\leqslant\tfrac{1}{2}\,,\; \Im({z})=0\big\}$.
Attachment:
comlineint.png


Because the curve $\gamma$ with parametric representation \[\gamma(t)=\displaystyle(1-t)\cos({t\pi})+\frac{1}{2}\,\big(-1+(2t-4)\sin(t\pi)\big)\,i\,,\quad t\in\big[-\tfrac{1}{2},\tfrac{1}{2}\big]\,.\] lies entirely on a simply connected, open set, which does not contains the half line $\big\{z\in{\mathbb{C}}\;|\;\Re(z)\leqslant\tfrac{1}{2}\,,\; \Im({z})=0\big\}$, and also is homotopic to the semicircle $c(t)=2\,{\rm{e}}^{-t\,\pi\,i}\,,\quad t\in\big[-\tfrac{1}{2},\tfrac{1}{2}\big]$, we have that
\begin{align*}
\displaystyle\oint_{\gamma}{{\rm{Log}}\,\big(z-\tfrac{1}{2}\big)\,dz}&=\oint_{c}{{\rm{Log}}\,\big(z-\tfrac{1}{2}\big)\,dz}\\
&=\int_{-\frac{1}{2}}^{\frac{1}{2}}{{\rm{Log}}\,\big(2\,{\rm{e}}^{-t\pi\,i}-\tfrac{1}{2}\big)\,\big(2\,{\rm{e}}^{-t\pi\,i}\big)'\,dt}\\
&\mathop{=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=}\limits^{\begin{subarray}{c}
{u\,=\,2\,{\rm{e}}^{-t\pi\,i}} \\
{du\,=\,(2\,{\rm{e}}^{-t\pi\,i})'\,dt} \\
\end{subarray}}\,\int_{2i}^{-2i}{{\rm{Log}}\,\big(u-\tfrac{1}{2}\big)\,du}\\
&=\int_{2i}^{-2i}{u'\,{\rm{Log}}\,\big(u-\tfrac{1}{2}\big)\,du}\\
&=\Big[u\,{\rm{Log}}\,\big(u-\tfrac{1}{2}\big)\Big]_{2i}^{-2i}-\int_{2i}^{-2i}{\frac{u}{u-\frac{1}{2}}\,du}\\
&=-2i\log\tfrac{17}{4}-\int_{2i}^{-2i}{du}-\frac{1}{2}\int_{2i}^{-2i}{\frac{1}{u-\frac{1}{2}}\,du}\\
&=-2i\log\tfrac{17}{4}+4i-\frac{1}{2}\Big[{\rm{Log}}\,\big(u-\tfrac{1}{2}\big)\Big]_{2i}^{-2i}\\
&\stackrel{(*)}{=}-2i\log\tfrac{17}{4}+4i-i\,({\rm{Arctan}}\,4-\pi)\\
&=\big(4+\pi-{\rm{Arctan}}\,4-2\log\tfrac{17}{4}\big)\,i\,.
\end{align*}



$(*)\quad {\rm{Arctan}}\,{z}=\dfrac{i}{2}\big({\rm{Log}}\,(1-i\,z)-{\rm{Log}}\,(1+i\,z)\big)={\rm{Arccot}}\,{\tfrac{1}{z}}\,.$

_________________
Grigorios Kostakos


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net