It is currently Sun Mar 18, 2018 7:00 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 2 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: Volume and area of a solidPosted: Sun Sep 24, 2017 6:37 pm
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 443
Location: Ioannina, Greece
Let $a,b,c,d$ positive real numbers such that $a<b$, $d^2=\dfrac{b-a}{2c}$ and the closed disk $D=\big\{(x,y)\in{\mathbb{R}}^2\;\big|\;(x-x_0)^2+(y-y_0)^2\leqslant d^2\big\}\,.$ Find the volume and the surfase area of the solid $V=\Big\{(x,y,z)\in{\mathbb{R}}^3\;\big|\;(x,y)\in{D}\,,\; a+c(x-x_0)^2+c(y-y_0)^2\leqslant{z}\leqslant b-c(x-x_0)^2-c(y-y_0)^2\Big\}\,.$

_________________
Grigorios Kostakos

Top

 Post subject: Re: Volume and area of a solidPosted: Sun Nov 26, 2017 8:02 am
 Team Member

Joined: Mon Nov 09, 2015 1:36 am
Posts: 443
Location: Ioannina, Greece
$D=\big\{(x,y)\in{\mathbb{R}}^2\;\big|\;(x-x_0)^2+(y-y_0)^2\leqslant d^2\big\}$ is a closed disk with center $(x_0,y_0)$ and radius $d=\sqrt{\frac{b-a}{2c}}$. The paraboloids $z=a+c(x-x_0)^2+c(y-y_0)^2$, $z=b-c(x-x_0)^2-c(y-y_0)^2$, by which the solid $V=\Big\{(x,y,z)\in{\mathbb{R}}^3\;\big|\;(x,y)\in{D}\,,\; a+c(x-x_0)^2+c(y-y_0)^2\leqslant{z}\leqslant b-c(x-x_0)^2-c(y-y_0)^2\Big\}\,,$ is defined, have as intersection the circle $\big\{(x,y,z)\in{\mathbb{R}}^3\;\big|\;(x-x_0)^2+(y-y_0)^2= d^2\,,\; z=\frac{a+b}{2}\big\}$. So, the solid $V$ has the form
Attachment:

aplogIV_5.png [ 78.21 KiB | Viewed 143 times ] aplogIV_5.png [ 78.21 KiB | Viewed 143 times ]

$V$ is normal set in ${\mathbb{R}}^3$, with respect to $xy$-plane. So, the volume of $V$ is
\begin{align*}
V(V)&= \mathop{\iint}\limits_{D}b-c(x-x_0)^2-c(y-y_0)^2-\big(a+c(x-x_0)^2+c(y-y_0)^2\big)\,d(x,y)\\
&= \mathop{\iint}\limits_{D}b-a-2c(x-x_0)^2-2c(y-y_0)^2\,d(x,y)\\
&= \frac{1}{2c}\int_{-d}^{d}\int_{x_0-\sqrt{d^2-(x-x_0)^2}}^{x_0+\sqrt{d^2-(x-x_0)^2}}\cancelto{d^2}{\frac{b-a}{2c}}-(x-x_0)^2-(y-y_0)^2\,dy\,dx\\
&\stackrel{(*)}{=} \frac{1}{2c}\int_{0}^{d}\int_{0}^{2\pi}(d^2-r^2)\,|r|\,d\varphi\,dr\\
&= \frac{\pi}{c}\int_{0}^{d}d^2r-r^3\,dr \\
&= \frac{\pi}{c}\,\frac{d^4}{4}\\
&= \frac{d^4\pi}{4c}\,.
\end{align*} $(*)$ Change of coordinates \begin{align*}
\left({
\begin{array}{c}
x(r,\varphi)\\
y(r,\varphi)
\end{array}
}\right)&=\left({
\begin{array}{c}
x_0+r\cos\varphi\\
y_0+r\sin\varphi
\end{array}
\end{align*}
The normal vectors of the surfaces \begin{align*}
\overline{S}_1(z,\varphi)&=\left({ \begin{array}{c}
x_0+\sqrt{\frac{b-z}{c}}\,\cos \varphi\\
y_0+\sqrt{\frac{b-z}{c}}\,\sin \varphi\\
z
\end{array}
}\right)\,,\quad z \in \big[\tfrac{a+b}{2},b\big],\; \varphi \in [0, 2\pi]\,,\\
\overline{S}_2(z,\varphi)&=\left({ \begin{array}{c}
x_0+\sqrt{\frac{z-a}{c}}\,\cos \varphi\\
y_0+\sqrt{\frac{z-a}{c}}\,\sin \varphi\\
z
\end{array}
}\right)\,,\quad z \in \big[a,\tfrac{a+b}{2}\big],\; \varphi \in [0, 2\pi]\,,
\end{align*} are \begin{align*} \overline{N}_{S_1}(z,\varphi)&=\displaystyle\frac{\partial\overline{S}_1 }{\partial z}\times\frac{\partial\overline{S}_1 }{\partial \varphi}\\
&=\left|{\begin{array}{ccc}
\overline{e}_1 & \overline{e}_2 & \overline{e}_3\\
-\frac{1}{2\sqrt{c(b-z)}}\cos \varphi & -\frac{1}{2\sqrt{c(b-z)}}\sin\varphi & 1\\
-\sqrt{\frac{b-z}{c}}\sin\varphi & \sqrt{\frac{b-z}{c}}\cos\varphi & 0
\end{array}}\right|\\
&=-\sqrt{\frac{b-z}{c}}\sin\varphi\,\overline{e}_1-\sqrt{\frac{b-z}{c}}\cos\varphi\,\overline{e}_2-\frac{1}{2c}\,\overline{e}_3\,,\\ \overline{N}_{S_2}(z,\varphi)&=\displaystyle\frac{\partial\overline{S}_2 }{\partial z}\times\frac{\partial\overline{S}_2 }{\partial \varphi}\\
&=\left|{\begin{array}{ccc}
\overline{e}_1 & \overline{e}_2 & \overline{e}_3\\
\frac{1}{2\sqrt{c(z-a)}}\cos \varphi & \frac{1}{2\sqrt{c(z-a)}}\sin\varphi & 1\\
-\sqrt{\frac{z-a}{c}}\sin\varphi & \sqrt{\frac{z-a}{c}}\cos\varphi & 0
\end{array}}\right|\\
&=-\sqrt{\frac{z-a}{c}}\sin\varphi\,\overline{e}_1-\sqrt{\frac{z-a}{c}}\cos\varphi\,\overline{e}_2+\frac{1}{2c}\,\overline{e}_3\,,
\end{align*}
respectively. So, the area of $\partial{V}$ is equal to \begin{align*}
A(\partial{V})&=A(S_1)+A(S_2)\\
&=\displaystyle\mathop{\oiint}\limits_{S_1}{\big\|{\overline{N}_{S_1}(z,\varphi)}\big\|\,d(z,\varphi)}+\mathop{\oiint}\limits_{S_2}{\big\|{\overline{N}_{S_2}(z,\varphi)}\big\|\,d(z,\varphi)}\\
&=\bigintss_{\frac{a+b}{2}}^{b}\bigintss_{0}^{2\pi}{\sqrt{\Big(-\sqrt{\frac{b-z}{c}}\sin\varphi\Big)^2+\Big(-\sqrt{\frac{b-z}{c}}\cos\varphi\Big)^2+\Big(-\frac{1}{2c}\Big)^2}\;d\varphi\,dz}\,+\\
&=\bigintsss_{\frac{a+b}{2}}^{b}\bigintsss_{0}^{2\pi}{\sqrt{\frac{b-z}{c}+
\frac{1}{4c^2}}\;d\varphi\,dz}+\bigintsss_a^{\frac{a+b}{2}}\bigintsss_{0}^{2\pi}{\sqrt{\frac{z-a}{c}+
\frac{1}{4c^2}}\;d\varphi\,dz}\\
&=\frac{\pi}{c}\int_{\frac{a+b}{2}}^{b}{\sqrt{4c(b-z)+1}\;dz}+\frac{\pi}{c}\int_a^{\frac{a+b}{2}}{\sqrt{4c(z-a)+
1}\;dz} \\
&=-\frac{\pi}{6c^2}\Big[\big(4c(b-z)+1\big)^{\frac{3}{2}}\Big]_{\frac{a+b}{2}}^{b}+\frac{\pi}{6c^2}\Big[\big(4c(z-a)+
1\big)^{\frac{3}{2}}\Big]_a^{\frac{a+b}{2}}
\\
&=-\frac{\pi}{6c^2}\big(1-(4c^2d^2+1)^{\frac{3}{2}}\big)+\frac{\pi}{6c^2}\big((4c^2d^2+1)^{\frac{3}{2}}-1\big)\\
&=\dfrac{\pi}{3c^2}\big((4c^2d^2+1)^{\frac{3}{2}}-1\big)\,.
\end{align*}

_________________
Grigorios Kostakos

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta