Euler numbers as determinants

Linear Algebra
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Euler numbers as determinants

#1

Post by Grigorios Kostakos »

It is known that \[\displaystyle\frac{1}{\cos{x}}=\sum_{n=0}^{+\infty}{\frac{(-1)^{n}{\rm{E}}_{2n}x^{2n}}{(2n)!}}\,,\quad |x|<\tfrac{\pi}{2}\] where \({\rm{E}}_{2n}\,,\; n=0,1,2,\ldots\) are the even-indexed Euler numbers. Prove for \(n=0^{(*)},1,2,\ldots\,,\) that \[{\rm{E}}_{2n}=(-1)^n(2n)!\left|{\begin{array}{ccccccc} \frac{1}{2!} & 1 & 0 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{4!} & \frac{1}{2!} & 1 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{6!} & \frac{1}{4!} & \frac{1}{2!} & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ \\ \frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \frac{1}{(2n-8)!} & \cdots & \frac{1}{2!} & 1\\\\ \frac{1}{(2n)!} &\frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \cdots & \frac{1}{4!} & \frac{1}{2!}\end{array}}\right|\,.\]

Note: The determinant of the \(0\times0\)-matrix is equal to \(1\).


HINT
\(\displaystyle1=\frac{1}{\cos{x}}\cos{x}=\sum_{n=0}^{+\infty}{\frac{(-1)^{n}{\rm{E}}_{2n}x^{2n}}{(2n)!}}\sum_{n=0}^{+\infty}{\frac{(-1)^{n}x^{2n}}{(2n)!}}\,.\)
Grigorios Kostakos
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Euler numbers as determinants

#2

Post by Tolaso J Kos »

Hello Grigoris,

$$\begin{aligned}
1 &=\cos x \sec x \\
&= \sum_{n=0}^{\infty}\frac{(-1)^n{\rm E}_{2n}x^{2n}}{(2n)!}\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n}}{\left ( 2n \right )!}\\
&= \sum_{n=0}^{\infty}\left ( \sum_{k=0}^{n}\frac{1}{\left ( 2n-2k \right )!}\frac{{\rm E}_{2k}}{(2k)!} \right )(-1)^n x^{2n}\\
&=\sum_{n=0}^{\infty}\left ( \sum_{k=0}^{n}\binom{2n}{2k}{\rm E}_{2k} \right )\frac{(-1)^n x^{2n}}{(2n)!} \\
\end{aligned}$$

Hence by equating coefficients we get that:

$${\rm E}_0=1, \;\; {\rm E}_{2n}=-\sum_{k=0}^{n-1}\binom{2n}{2k}{\rm E}_{2k}, \; n\geq 1$$

which is the recursive formula of the Euler even indexed numbers.

We , now prove by induction that the relation given and the recursive are equal.
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 9 guests