Determinant of a \(n\times{n}\) matrix

Linear Algebra
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Determinant of a \(n\times{n}\) matrix

#1

Post by Grigorios Kostakos »

Calculate the determinant of the \(n\times{n}\) real matrix \[A=\left({\begin{array}{cccccc} x & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1}\\ a_1 & x & a_2 & \cdots & a_{n-2} & a_{n-1}\\ a_1 & a_2 & x & \cdots & a_{n-2} & a_{n-1}\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ a_1 & a_2 & a_3 & \cdots & x & a_{n-1}\\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & x \end{array}}\right)\,.\]
Grigorios Kostakos
Demetres
Former Team Member
Former Team Member
Posts: 77
Joined: Mon Nov 09, 2015 11:52 am
Location: Limassol/Pyla Cyprus
Contact:

Re: Determinant of a \(n\times{n}\) matrix

#2

Post by Demetres »

We observe that if \(x = a_1\) then the first row of \(A\) is identical to the second row and so in this case the determinant is 0. This implies that \(x-a_1\) is a factor of the determinant. Similarly, \(x-a_2\) is also a factor since in the case that \(x=a_2\) the second row of \(A\) is identical to the third row and so on.

We deduce that \( \det(A) = C(x-a_1) \cdots (x-a_{n-1})(x-k) \) for some constants \(C,k\). Clearly, the coefficient of \(x^n\) is equal to 1, and so \(C=1\). Furthermore, the coefficient of \(x^{n-1}\) must be equal to \(0\). To see this just observe that we cannot choose \(n\) entries of \(A\) such that we have exactly one entry from each row, exactly one from each column and with exactly \(n-1\) of them to be equal to the \(x\)'s. This means that \(k = -(a_1+\cdots + a_{n-1})\) and so \[ \det(A) = (x-a_1) \cdots (x-a_{n-1})(x+a_1 + \cdots + a_{n-1}).\] Strictly speaking the above proof only works in the cases that the \(a_i\)'s are distinct as otherwise we need to be more careful with the multiplicities of the roots. However, given a matrix \(A\) in which some of the \(a_i\)'s are equal we can find a sequence \(A_m\) of matrices of the above form having distinct \(a_i\)'s and such as the entries of \(A_m\) tend to the entries of \(A\) as \(m \to \infty\). Since the result is true for the \(A_m\)'s and since the determinant is computed using just the operations of addition and multiplication of its elements we deduce that the result must be true for \(A\) as well.
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Re: Determinant of a \(n\times{n}\) matrix

#3

Post by Grigorios Kostakos »

Thank you Demetres.
A second solution is \begin{align*}
|{A}|&=\left|{\begin{array}{cccccc}
x & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1}\\
a_1 & x & a_2 & \cdots & a_{n-2} & a_{n-1}\\
a_1 & a_2 & x & \cdots & a_{n-2} & a_{n-1}\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
a_1 & a_2 & a_3 & \cdots & x & a_{n-1}\\
a_1 & a_2 & a_3 & \cdots & a_{n-1} & x
\end{array}}\right|{\begin{array}{l}
{{\rm{r}}_1\rightarrow{\rm{r}}_1-{\rm{r}}_{2}}\\
{{\rm{r}}_2\rightarrow{\rm{r}}_2-{\rm{r}}_{3}}\\
{{\rm{r}}_3\rightarrow{\rm{r}}_3-{\rm{r}}_{4}}\\
{\;\vdots\hspace{1.2cm}\vdots}\\
{{\rm{r}}_{n-1}\rightarrow{\rm{r}}_{n-1}-{\rm{r}}_{n}}\\
{}\end{array}}\\
& =\left|{\begin{array}{cccccc}
x-a_1 & a_1-x & 0 & \cdots & 0 & 0\\
0 & x-a_2 & a_2-x & \cdots & 0 & 0\\
0 & 0 & x-a_3 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & x-a_{n-1} & a_{n-1}-x\\
a_1 & a_2 & a_3 & \cdots & a_{n-1} & x
\end{array}}\right|\\
& =(x-a_1)\,(x-a_2)(x-a_3)\cdots(x-a_{n-1})\left|{\begin{array}{rrrccr}
1 & -1 & 0 & \cdots & 0 & 0\\
0 & 1 & -1 & \cdots & 0 & 0\\
0 & 0 & 1 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \cdots & 1 & -1\\
a_1 & a_2 & a_3 & \cdots & a_{n-1} & x
\end{array}}\right|\\
& =\displaystyle\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{n+1}\,a_1\left|{\begin{array}{rrrcrr}
-1 & 0 & 0 & \cdots & 0 & 0\\
1 & -1 & 0 &\cdots & 0 & 0\\
0 & 1 & -1 &\cdots & 0 & 0\\
\vdots & \vdots &\vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 &\cdots & -1 & 0\\
0 & 0 & 0 &\cdots & 1 & -1
\end{array}}\right|\,+\\
&\quad\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{n+2}\,a_2\left|{\begin{array}{rrrcrr}
1 & 0 & 0 & \cdots & 0 & 0\\
0 & -1 & 0 &\cdots & 0 & 0\\
0 & 1 & -1 &\cdots & 0 & 0\\
\vdots & \vdots &\vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 &\cdots & -1 & 0\\
0 & 0 & 0 &\cdots & 1 & -1
\end{array}}\right|+\ldots\,+\\
&\quad\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{2n-1}\,a_{n-1}\left|{\begin{array}{rrrccr}
1 & -1 & 0 & \cdots & 0 & 0\\
0 & 1 & -1 &\cdots & 0 & 0\\
0 & 0 & 1 &\cdots & 0 & 0\\
\vdots & \vdots &\vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 &\cdots & 1 & 0\\
0 & 0 & 0 &\cdots & 0 & -1
\end{array}}\right|\,+\\
&\quad\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{2n}\,x\left|{\begin{array}{rrrccr}
1 & -1 & 0 & \cdots & 0 & 0\\
0 & 1 & -1 &\cdots & 0 & 0\\
0 & 0 & 1 &\cdots & 0 & 0\\
\vdots & \vdots &\vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 &\cdots & 1 & -1\\
0 & 0 & 0 &\cdots & 0 & 1
\end{array}}\right|\\
&=\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{n+1}\,a_1\,(-1)^{n-1}+\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{n+2}\,a_2\,(-1)^{n-2}+\ldots\,+\\
&\quad\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{2n-1}\,a_{n-1}\,(-1)+\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,(-1)^{2n}\,x\\
&=\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,\bigl({a_1\,(-1)^{2n}+(-1)^{2n}\,a_2+\ldots+(-1)^{2n}\,a_{n-1}+(-1)^{2n}\,x}\bigr)\\
&=\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,\bigl({a_1+a_2+\ldots+a_{n-1}+x}\bigr)\\
&=\displaystyle\biggl({\mathop{\sum}\limits_{j=1}^{n-1}{a_j}+x}\biggr)\,\mathop{\prod}\limits_{i=1}^{n-1}(x-a_i)\,.\qquad\square
\end{align*}
Grigorios Kostakos
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 4 guests