It is currently Sun Mar 18, 2018 4:51 am

 All times are UTC [ DST ]

 Page 1 of 1 [ 4 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: Linear isometryPosted: Thu May 18, 2017 9:10 am

Joined: Sat Nov 14, 2015 6:32 am
Posts: 137
Location: Melbourne, Australia
Let $f:\mathbb{R}^2 \rightarrow \mathbb{R}^2$. If:

• $f(\mathbf{0})=\mathbf{0}$
• $\left| {f\left( {\bf{u}} \right) - f\left( {\bf{v}} \right)} \right| = \left| {{\bf{u}} - {\bf{v}}} \right|$ for all ${{\bf{u}},{\bf{v}}}$

then prove that $f$ is linear.

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Post subject: Re: Linear isometryPosted: Thu May 18, 2017 6:31 pm
 Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 426
Let $\displaystyle{\langle{\,\,,\,\,\rangle}}$ denote the usual inner product of $\displaystyle{\mathbb{R}^2}$.

If $\displaystyle{u\in\mathbb{R}^2}$, then

$\displaystyle{|f(u)-f(0)|=|u-0|\iff |f(u)|=|u|}$, so,

$\displaystyle{|f(u)|=|u|\,\,,\forall\,u\in\mathbb{R}^2\,,(I)}$.

Now, if $\displaystyle{u\,,v\in\mathbb{R}^2}$ , then

\displaystyle{\begin{aligned}|f(u)-f(v)|^2=|u-v|^2&\iff |f(u)|^2-2\,\langle{f(u),f(v)\rangle}+|f(v)|^2=|u|^2-2\,\langle{u,v\rangle}+|v|^2\\&\iff \langle{f(u),f(v)\rangle}=\langle{u,v\rangle}\end{aligned}}

Finally, if $\displaystyle{u\,,v\in\mathbb{R}^2}$ and $\displaystyle{k\in\mathbb{R}}$, then

\displaystyle\begin{aligned}|f(u+k\,v)-(f(u)+k\,f(v))|^2&=|f(u+k\,v)|^2-2\,\langle{f(u+k\,v),f(u)+k\,f(v)\rangle}+|f(u)+k\,f(v)|^2\\&=|u+k\,v|^2-2\,\langle{f(u+k\,v),f(u)\rangle}-2\,k\,\langle{f(u+k\,v),f(v)\rangle}+|f(u)+k\,f(v)|^2\\&=|u+k\,v|^2-2\,\langle{u+k\,v,u\rangle}-2\,k\,\langle{u+k\,v,v\rangle}+|f(u)+k\,f(v)|^2\\&=|u+k\,v|^2+|f(u)+k\,f(v)|^2-2\,|u|^2-2\,k\,\langle{v,u\rangle}-2\,k\,\langle{u,v\rangle}-2\,k^2\,|v|^2\\&=|u|^2+2\,k\,\langle{u,v\rangle}+k^2\,|v|^2+|f(u)|^2+2\,k\,\langle{f(u),f(v)\rangle}\,+\\ &\qquad\qquad\qquad\qquad k^2\,|f(v)|^2-2\,|u|^2-4\,k\,\langle{u,v\rangle}-2\,k^2\,|v|^2\\&=-|u|^2-k^2\,|v|^2-2\,k\,\langle{u,v\rangle}+|u|^2+2\,k\,\langle{u,v\rangle}+k^2\,|v|^2\\&=0\end{aligned}

so $\displaystyle{f(u+k\,v)=f(u)+k\,f(v)}$

We deduce that $\displaystyle{f}$ is $\displaystyle{\mathbb{R}}$ - linear.

Top

 Post subject: Re: Linear isometryPosted: Thu May 18, 2017 7:31 pm

Joined: Sat Nov 14, 2015 6:32 am
Posts: 137
Location: Melbourne, Australia
Here is another solution I've seen ...

For convenience, identify $\mathbb{R}^2$ with $\mathbb{C}$ here. Then note that for any such function $f:\mathbb{C} \to \mathbb{C}$, also $z_1 \cdot f(z)$ a solution for any point $z_1$ on the unit circle. Also $\overline{f(z)}$ is a solution. Note that $\vert f(1)\vert=1$ and hence we can wlog assume that $f(1)=1$. So $f(i)$ is a point on the unit circle with distance $\sqrt{2}$ to $1$. Hence $f(i) =\pm i$, so w.l.o.g. assume that $f(i)=i$. But then for any $z \in \mathbb{C}$, both $z$ and $f(z)$ have the same distance to $0,1$ and $i$. So supposing $z \ne f(z)$, all $0,1,i$ lie on the perpendicular bisector between these points and in particular $0,1$ and $i$ are collinear which clearly is absurd. Hence $f(z)=z$ for all $z$ which proves the claim.

Credits

_________________
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$

Top

 Post subject: Re: Linear isometryPosted: Sun May 21, 2017 8:48 am

Joined: Thu Dec 10, 2015 1:58 pm
Posts: 59
Location: India
An alternative approach: It suffices to show that $f$ is surjective and preserves mid-points, i.e., if $x,y \in \mathbb{R}^2$ then, $$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$ then, by simple induction one can extend the above identity to $f(rx+(1-r)y) = rf(x) + (1-r)f(y)$ where, $r$ is a dyadic-rational in $(0,1)$ and then using continuity of $f$ and density of dyadic rationals one concludes $f(tx + (1-t)y) = tf(x) + (1-t)f(y)$, for $t \in (0,1)$, and hence $f$ is linear.

One argument for showing $f$ is surjective is noting that $f$ maps spheres of radius $r \ge 0$ onto itself ($rS^1 \overset{f}{\longrightarrow} rS^1$). Suppose not, then since, $f$ is injective, $S^1$ is homeomorphic to closed connected subset $f(S^1) \subset S^1\setminus \{p_0\} \equiv (0,1)$ for some $p_0 \in S^1$, i.e., homeomorphic to a closed sub-interval $[a,b] \subset (0,1)$ which is absurd. Since, removing mid-point from $[a,b]$ produces two connected components but $S^1\setminus \left\{f^{-1}((a+b)/2)\right\}$ is connected. Hence, $f$ is surjective.

Now to see that $f$ preserves mid-points, choose two arbitrary points $x,y \in \mathbb{R^2}$ and consider the spheres (homeomorphic to $S^1$) centered at $f(x)$ and $f(y)$ with radius $\frac{1}{2}|x-y|$. They intersect only at $\displaystyle \frac{f(x) + f(y)}{2}$, and the intersection of preimage under $f$ is only $\displaystyle \frac{x+y}{2}$. Hence, $\displaystyle f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$.

N.B.: The proof extends to 'surjective' isometries between real normed linear spaces $(X,\lVert\cdot \rVert_X) \overset{f}{\longrightarrow} (Y,\lVert\cdot \rVert_Y)$, whenever, $Y$ is strictly convex (i.e., the spheres in $Y$ do not contain line-segments).

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 4 posts ]

 All times are UTC [ DST ]

#### Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ Algebra    Linear Algebra    Algebraic Structures    Homological Algebra Analysis    Real Analysis    Complex Analysis    Calculus    Multivariate Calculus    Functional Analysis    Measure and Integration Theory Geometry    Euclidean Geometry    Analytic Geometry    Projective Geometry, Solid Geometry    Differential Geometry Topology    General Topology    Algebraic Topology Category theory Algebraic Geometry Number theory Differential Equations    ODE    PDE Probability & Statistics Combinatorics General Mathematics Foundation Competitions Archives LaTeX    LaTeX & Mathjax    LaTeX code testings Meta