It is currently Mon Nov 20, 2017 2:43 pm


All times are UTC [ DST ]




Post new topic Reply to topic  [ 3 posts ] 
Author Message
 Post subject: Inequality
PostPosted: Thu Feb 25, 2016 9:40 pm 
Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 424
Let \(\displaystyle{X}\) be a random variable and \(\displaystyle{I}\) an open interval in \(\displaystyle{\mathbb{R}}\) .

If \(\displaystyle{f:I\to \mathbb{R}}\) is a convex function, \(\displaystyle{P(X\in I)=1}\) and

\(\displaystyle{E(X)\,\,,E(f(X))}\) exist, then prove that

\(\displaystyle{f(E(X))\leq E(f(X))}\) .


Top
Offline Profile  
Reply with quote  

 Post subject: Re: Inequality
PostPosted: Sat Mar 05, 2016 11:37 am 

Joined: Wed Nov 11, 2015 12:47 pm
Posts: 13
$$\begin{eqnarray*}f\left(\mathbb{E}[\mathbb{X}]\right) &=& f\left(\sum_{i}x_{i}\cdot p(x_i)\right)\\&=&f\left(\sum_{i}\left(\frac{1}{2}x_{i}+\left(1-\frac{1}{2}\right)x_i\right)\cdot p(x_i)\right) \\
&\leq& \frac{1}{2}\sum_{i} f(x_i)p(x_i) + \frac{1}{2}\sum_{i} f(x_i)\cdot p(x_i)\\ &=&\frac{1}{2} \mathbb{E}\left[f(\mathbb{X})\right]+ \frac{1}{2}\mathbb{E}\left[f(\mathbb{X})\right] \\&=&\mathbb{E}\left[f(\mathbb{X})\right]\end{eqnarray*}$$


Top
Offline Profile  
Reply with quote  

 Post subject: Re: Inequality
PostPosted: Sat Mar 05, 2016 6:20 pm 
Team Member

Joined: Mon Nov 09, 2015 1:52 pm
Posts: 424
Thank you Zardoz for your solution.

Here is another one.

Solution

Since \(\displaystyle{P(X\in I)=1}\), we have that \(\displaystyle{\mu=E(X)\in I}\).

The function \(\displaystyle{f}\) is convex, so it has a straight line at \(\displaystyle{x=\mu}\), that is,

there exists \(\displaystyle{u\in\mathbb{R}}\) such that \(\displaystyle{f(x)\geq f(\mu)+u\,(x-\mu)\,,\forall\,x\in I}\) .

Therefore, \(\displaystyle{f(X)\geq f(\mu)+u\,(X-\mu)}\) and

\(\displaystyle{E(f(X))\geq f(\mu)+u\,(E(X)-\mu)=f(\mu)=f(E(X))}\) .


Top
Offline Profile  
Reply with quote  

Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 3 posts ] 

All times are UTC [ DST ]


Mathimatikoi Online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
Powered by phpBB® Forum Software © phpBB Group Color scheme created with Colorize It.
Theme created StylerBB.net